Question C.4: For the L-shaped area in Fig. 1 of Example C-2, (a) determin......

For the L-shaped area in Fig. 1 of Example C-2, (a) determine the orientation of the centroidal principal axes and show the orientation on a sketch. (b) Determine the principal moments of inertia.

Iy=5894147t4=40.10t4,   Iz=33,103294t4=112.60t4I_y = \frac{5894}{147}t^4 = 40.10t^4,      I_z = \frac{33,103}{294}t^4 = 112.60t^4

 

Iyz=2707t4=38.57t4I_{yz} = \frac{-270}{7}t^4 = -38.57t^4
لقطة الشاشة 2023-03-14 155245
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) From Eq. (C-23),

tan2θp=Iyz(IyIz2)\tan 2θ_p = \frac{- I_{yz}}{\left(\frac{I_y – I_z}{2}\right)}        (C-23)

tan2θp=Iyz(IyIz2)=(2707)11,78833,1032(294)=1.064\tan 2θ_p = \frac{- I_{yz}}{\left(\frac{I_y – I_z}{2}\right)} = \frac{-\left(\frac{-270}{7}\right)}{\frac{11,788 – 33,103}{2(294)}} = -1.064

2θp12θ_{p1} = 133.22°,    2θp22θ_{p2} = -46.78°

Then, as illustrated in Fig. 1,

θp1θ_{p1} = 66.6°,  θp2θ_{p2} = -23.4°

(b) From Eq. (C-26a),

ImaxIp1=Iy+Iz2+(IyIz2)2+Iyz2IminIp2=Iy+Iz2(IyIz2)2+Iyz2\begin{aligned} & I_{\max } \equiv I_{p_1}=\frac{I_y+I_z} {2}+\sqrt{\left(\frac{I_y-I_z}{2}\right)^2+I_{y z}^2} \\ & I_{\min } \equiv I_{p_2}=\frac{I_y+I_z}{2}-\sqrt{\left(\frac{I_y-I_z}{2}\right)^2+I_{y z}^2} \end{aligned}          (C-26)

Ip1=Iy+Iz2+(IyIz2)2+Iyz2I_{p_1}=\frac{I_y+I_z} {2}+\sqrt{\left(\frac{I_y-I_z}{2}\right)^2+I_{y z}^2}

= 40.10t4+112.60t42+(40.10t4112.60t42)2+(38.57t4)2\frac{40.10t^4 + 112.60t^4}{2} + \sqrt{\left(\frac{40.10t^4 – 112.60t^4}{2} \right)^2+ (-38.57t^4)^2}

= 129.28t4t^4

or

Ip1=129.3t4I_{p1} = 129.3t^4

Similarly, from Eq. (C-26b),

Ip2=23.4t4I_{p2} = 23.4t^4

Related Answered Questions