For the L-shaped area in Fig. 1 of Example C-2, (a) determine the orientation of the centroidal principal axes and show the orientation on a sketch. (b) Determine the principal moments of inertia.
Iy=1475894t4=40.10t4, Iz=29433,103t4=112.60t4Iyz=7−270t4=−38.57t4
(a) From Eq. (C-23),
tan2θp=(2Iy–Iz)−Iyz (C-23)
tan2θp=(2Iy–Iz)−Iyz=2(294)11,788–33,103−(7−270)=−1.0642θp1 = 133.22°, 2θp2 = -46.78°
Then, as illustrated in Fig. 1,
θp1 = 66.6°, θp2 = -23.4°
(b) From Eq. (C-26a),
Imax≡Ip1=2Iy+Iz+(2Iy−Iz)2+Iyz2Imin≡Ip2=2Iy+Iz−(2Iy−Iz)2+Iyz2 (C-26)
Ip1=2Iy+Iz+(2Iy−Iz)2+Iyz2= 240.10t4+112.60t4+(240.10t4–112.60t4)2+(−38.57t4)2
= 129.28t4
or
Ip1=129.3t4Similarly, from Eq. (C-26b),
Ip2=23.4t4