Question 16.8.1: For all values of p, find the solutions of the system px + y......

For all values of p, find the solutions of the system

px+y   =1     xy+z=0 2yz=3\begin{matrix} px + y \ \ \ \quad \quad = 1 \\ \ \ \ \ \ x − y + z = 0 \\ \ \quad \quad 2y − z = 3 \end{matrix}
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The coefficient matrix has determinant

A=p 1 011 10  21=1p\left|A\right| =\left | \begin{matrix} p & \quad  1 & \quad  0 \\ 1 & -1 & \quad   1 \\ 0 & \quad   2 & -1 \end{matrix} \right | =1-p

According to Theorem 16.8.1, the system has a unique solution if 1p01-p\neq0 —that is, if p1.p\neq1. In this case, the determinants in (16.8.2) are

Dj=a11a1,j1b1a1,j+1a1na21a2,j1b2a2+j+1a2n.....:::::an1an,j1bnan,j+1annD_{j}=\left | \begin{matrix} a_{11} & … & a_{1,j-1} & b_{1} & a_{1,j+1} & … & a_{1n} \\ a_{21} & … & a_{2,j-1} & b_{2} & a_{2+j+1} & … & a_{2n} \\ . & & . & . & . & & . \\ : & & : & : & : & & : \\ a_{n1}&…& a_{n, j−1}& b_{n}& a_{n, j+1} & …& a_{nn}\end{matrix} \right | (16.8.2)

 

D1=110011321,D2=p10101031andD3=p11110023D_{1} =\left | \begin{matrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 3 & 2 & -1 \end{matrix} \right | , D_{2} =\left | \begin{matrix} p & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 3 & -1 \end{matrix} \right | \quad \quad \text{and}\quad \quad D_{3} =\left | \begin{matrix} p & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 2 & 3 \end{matrix} \right |

whose numerical values are D1=2,D2=13p,D_{1} = 2, D_{2} = 1 − 3p, and D3=13p.D_{3} = −1 − 3p. Then, for p1,p \neq 1, Eq. (16.8.4) yields

x1=D1A,   x2=D2A,,   xn=DnAx_{1}={\frac{D_{1}}{|\mathbf{A}|}}\,,\,\,\,x_{2}={\frac{D_{2}}{|\mathbf{A}|}}\,,\cdot\cdot\cdot\,,\,\,\,x_{n}={\frac{D_{n}}{|\mathbf{A}|}}      (16.8.4)

x=D1A=21p,y=D2A=13p1p,x=\frac{D_{1}}{|{\bf A}|}=\frac{2}{1-p},\quad y=\frac{D_{2}}{|{\bf A}|}=\frac{1-3p}{1-p}, and          z=D3A=13p1p\mathrm{and}\;\;\;\;\;z=\frac{D_{3}}{|{\bf A}|}=\frac{-1-3p}{1-p}

On the other hand, in case p = 1, the first equation becomes x + y = 1. Yet adding the last two of the original equations implies that x + y = 3. There is no solution to these two contradictory equations in case p = 1.9^{9}

9^{9} It might be instructive to solve this problem by using Gaussian elimination, starting by interchanging the first two equations.

Related Answered Questions

Question: 16.7.2

Verified Answer:

First, write down the 3 ×6 matrix (A:I)=\le...
Question: 16.7.1

Verified Answer:

According to Theorem 16.7.1, A has an inverse if a...
Question: 16.6.4

Verified Answer:

Because of (16.6.5), it suffices to find a number ...
Question: 16.6.2

Verified Answer:

We find a 2 ×2 matrix X such that AX = I, after wh...
Question: 16.6.5

Verified Answer:

Suppose we define the matrices A=\begin{pma...
Question: 16.6.3

Verified Answer:

The matrix equation A − A² = I yields A(I − A) = I...
Question: 16.1.2

Verified Answer:

x_{1}=\frac{\left | \begin{matrix} 7 & ...