Find the derivatives of: \mathrm{(a)}f(x)=10^{-x};\mathrm{and}\left({\mathrm{b}}\right)g(x)=x2^{3x}.
(a) Rewrite f (x) = 10^{−x} = 10^{u}, where u = −x. Using (6.10.3) and the chain rule gives
y=a^{x}\Rightarrow y^{\prime}=a^{x}\ln a (6.10.3)
f^{\prime}(x) = −10^{−x} \ln 10.
(b) Rewrite y = 2^{3x} = 2^{u}, where u = 3x. By (6.10.3) and the chain rule,
y^{\prime} = (2^{u} \ln 2)u^{\prime} = (2^{3x} \ln 2) · 3 = 3 · 2^{3x} \ln 2
Finally, using the product rule we obtain
g^{\prime}(x) = 1 · 2^{3x} + x · 3 · 2^{3x} \ln 2 = 2^{3x}(1 + 3x \ln 2)