Question 5.7: Two equal pendulums perform small oscillations coupled by a ......

Two equal pendulums perform small oscillations coupled by a spring of negligible mass. Determine the normal modes of vibration and the solution to the equations of motion if, when t =0, only one of the pendulums is slightly displaced from its equilibrium position and the motion starts with both pendulums at rest.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let us assume that the equilibrium configuration is \theta_{1} = \theta_{2}= 0, in which the spring has its natural length d_{0}.We shall use as coordinates the small horizontal displacements \eta_{1} and \eta_{2} shown in Fig. 5.7, which are related to the small angles \theta_{1} and \theta_{2} by

\eta_{1}= l \sin\theta_{1} \approx  l \theta_{1}, \eta_{2}= l \sin\theta_{2} \approx  l \theta_{2}.  (5.105)

The kinetic energy is

T =\frac{ml^{2}}{2}\dot{\theta} ^{   2}_{1}+ \frac{ml^{2}}{2}\dot{\theta} ^{   2}_{2} \approx \frac{m}{2} \dot{\eta}^{   2}_{1}+\frac{m}{2} \dot{\eta}^{   2}_{2},  (5.106)

while the potential energy is written

V = \frac{k}{2}\left[\left(d_{0}+\eta_{2}-\eta_{1}\right)-d_{0}\right] ^{2}+mg \left[l\left(1- \cos \theta_{1}\right)+l\left(1- \cos \theta_{2}\right)\right].  (5.107)

Using \cos \theta \approx  1- {\theta^{2}}/{2} and (5.105) we get

V = \frac{k}{2}\left(\eta_{2}-\eta_{1}\right)^{2}+ \frac{mg}{2l}\left(\eta^{  2}_{1}-\eta^{  2}_{2}\right),  (5.108)

so the Lagrangian appropriate to the description of small oscillations is

L =\frac{m}{2}\left(\dot{\eta}^{2}_{1}+\dot{\eta}^{2}_{2}\right)-\frac{1}{2}\left\{\frac{mg}{l}\left(\eta^{   2}_{1}+\eta^{   2}_{2}\right)+k \left(\eta_{2}-\eta_{1}\right)^{2}\right\} .  (5.109)

Comparing this with the standard form (5.84) we have

L=\frac{1}{2} \sum\limits_{kl}{T_{kl}\dot{\eta }_{k}\dot{\eta }_{l} }-\frac{1}{2} \sum\limits_{kl}{V_{kl}\eta _{k}\eta _{l} },  (5.84)

T=\begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix}, V=\begin{pmatrix} \frac{mg}{l}+k & -k \\ -k & \frac{mg}{l}+k \end{pmatrix}.  (5.110)

Warning In the standard form (5.84), the off-diagonal terms appear in duplicate. For example, in the second double sum over k and l there is one term for k = 1, l = 2 and another for k = 2, l = 1, which are equal to each other because V_{12} = V_{21}. Thus, the coefficient of \eta_{1}\eta_{2} is V_{12}+V_{21}= 2V_{12}. On the other hand, the coefficient of \eta_{1}\eta_{2} in the expression within brackets in (5.109) is −2k, hence the identification V_{12} = −k. This kind of attention is needed when comparing the standard form (5.84) with a specific Lagrangian such as (5.109), otherwise errors by a factor of two will be made, which will damage all subsequent results.

The frequencies of the normal modes are the solutions of

det\left(V-\omega ^{2}T\right)= det\begin{pmatrix} \frac{mg}{l}+k-m\omega ^{2} & -k \\ -k & \frac{mg}{l}+k-m\omega ^{2} \end{pmatrix} =0,  (5.111)

that is,

\left(\frac{mg}{l}+k-m\omega ^{2}\right)^{2}-k^{2}=0 \Longrightarrow  \frac{mg}{l}+k-m\omega ^{2}=\pm k.  (5.112)

The characteristic frequencies are

\omega_{1}= \left(\frac{g}{l}\right)^{{1}/{2}} , \omega_{2}= \left(\frac{g}{l}+\frac{2k}{m}\right)^{{1}/{2}}, (5.113)

and the corresponding eigenvectors \varrho ^{(s)} are such that

\left(V-\omega ^{2}_{1}T\right)\varrho^{\left(1\right)}=0 \Longrightarrow \begin{pmatrix} k & -k \\ -k & k \end{pmatrix} \left ( \begin{matrix} \varrho^{\left(1\right)}_{1} \\ \varrho^{\left(1\right)}_{2} \end{matrix} \right ) =0 \Longrightarrow \varrho^{\left(1\right)}=\left ( \begin{matrix} \alpha \\ \alpha \end{matrix} \right ),

\left(V-\omega ^{2}_{2}T\right)\varrho^{\left(2\right)}=0 \Longrightarrow \begin{pmatrix} -k & -k \\ -k & -k \end{pmatrix} \left ( \begin{matrix} \varrho^{\left(2\right)}_{1} \\ \varrho^{\left(2\right)}_{2} \end{matrix} \right ) =0 \Longrightarrow \varrho^{\left(2\right)}=\left ( \begin{matrix} \beta \\ -\beta \end{matrix} \right ),

where α and β are non-zero real numbers. The mode with frequency \omega _{1} corresponds to an oscillatory motion of the pendulums with \eta_{1} = \eta_{2}. In this case, it all happens as if the spring did not exist since it remains with its natural length all the time, which explains the value of \omega_{1} given by (5.113): the pendulums oscillate in unison with the frequency of an individual simple pendulum. The second normal mode consists in an oscillatory motion of the pendulums with frequency \omega_{2}, but now \eta_{1} = -\eta_{2} and the pendulums oscillate in opposite directions, as depicted in Fig. 5.8.

The two linearly independent real solutions can be chosen as

\varrho^{\left(1\right)}=\left ( \begin{matrix} 1 \\ 1 \end{matrix} \right ), \varrho^{\left(2\right)}=\left ( \begin{matrix} 1 \\ -1 \end{matrix} \right )  (5.114)

and the general solution (5.104) takes the form

\eta _{k}\left(t\right)=\sum\limits_{s=1}^{n}{C^{\left(s\right) }\varrho^{\left(s\right)}_{k}\cos \left(\omega _{s}t+\phi_{s} \right) } ,  k = 1, . . . , n . (5.104)

\eta _{1}\left(t\right)=\sum\limits_{s=1}^{2}{C^{\left(s\right) }\varrho^{\left(s\right)}_{1}\cos \left(\omega _{s}t+\phi_{s} \right) } = C^{\left(1\right) }\cos \left(\omega _{1}t+\phi_{1} \right)+C^{\left(2\right) } \cos \left(\omega _{2}t+\phi_{2} \right),  (5.115)

\eta _{2}\left(t\right)=\sum\limits_{s=1}^{2}{C^{\left(s\right) }\varrho^{\left(s\right)}_{2}\cos \left(\omega _{s}t+\phi_{s} \right) } = C^{\left(1\right) }\cos \left(\omega _{1}t+\phi_{1} \right)-C^{\left(2\right) } \cos \left(\omega _{2}t+\phi_{2} \right).  (5.116)

From the initial conditions \eta_{1}\left( 0\right) = 0, \eta_{2}\left( 0\right) = a, \dot{\eta_{1}} \left( 0\right) =\dot{\eta_{2}}\left( 0\right) = 0, we infer

C^{\left(1\right) }\cos \phi_{1} +C^{\left(2\right) }\cos \phi_{2} =0,  (5.117a)

C^{\left(1\right) }\cos \phi_{1}  -C^{\left(2\right) }\cos \phi_{2} =a,  (5.117b)

-\omega _{1}C^{\left(1\right) }\sin \phi_{1} -\omega _{2}C^{\left(2\right) }\sin \phi_{2}=0,  (5.117c)

-\omega _{1}C^{\left(1\right) }\sin \phi_{1} +\omega _{2}C^{\left(2\right) }\sin \phi_{2}=0.  (5.117d)

By adding the first two and the last two of Eqs. (5.117) we deduce

C^{\left(1\right) }\cos \phi_{1}= -C^{\left(2\right) }\cos \phi_{2}= {a}/{2}, (5.118a)

C^{\left(1\right) }\sin \phi_{1} =C^{\left(2\right) }\sin \phi_{2}= 0.  (5.118b)

Neither C^{\left(1\right) }=0 nor C^{\left(2\right) }=0 is admissible because this would give rise to a contradiction with (5.118a). Therefore, \sin \phi_{1}=\sin \phi_{2}=0, whose simplest solution is \phi_{1}=\phi_{2}=0, by reason of which C^{\left(1\right) }=-C^{\left(2\right) }={a}/{2}. Finally, the solution to the equations of motion is written

\eta_{1}\left( t\right)= \frac{a}{2} \left(\cos \omega _{1}t- \cos \omega _{2}t\right),   (5.119a)

\eta_{2}\left( t\right)= \frac{a}{2} \left(\cos \omega _{1}t+ \cos \omega _{2}t\right),   (5.119b)

with \omega _{1} and \omega _{2} given by (5.113).

7
8

Related Answered Questions