Construct the Hamiltonian and Hamilton’s equations for a charged particle in an external electromagnetic field.
In Cartesian coordinates we have
L =\frac{m}{2}\left(\dot{x}^{2} +\dot{y}^{2}+\dot{z}^{2}\right) -e\phi \left(r,t\right) +\frac{e}{c}v\cdot A\left(r,t\right), (7.18)
whence
p_{x}=\frac{\partial L}{\partial \dot{x} }=m \dot{x}+\frac{e}{c} A_{x}, p_{y}=\frac{\partial L}{\partial \dot{y} }=m \dot{y}+\frac{e}{c} A_{y}, p_{z}=\frac{\partial L}{\partial \dot{z} }=m \dot{z}+\frac{e}{c} A_{z}. (7.19)
Thus,
v =\frac{1}{m}\left(p −\frac{e}{c} A\right) (7.20)
and, consequently,
H = v · p − L =\frac{1}{2m}\left(p −\frac{e}{c} A\right)^{2}+e\phi. (7.21)
This Hamiltonian is the total energy if \phi and A do not explicitly depend on time (E and B static fields). Hamilton’s equations take the form
\dot{r}= \frac{\partial H}{\partial p }= \frac{1}{m }\left(p −\frac{e}{c} A\right), (7.22a)
\dot{p}=-\frac{\partial H}{\partial r }\equiv – \nabla H = \frac{e}{mc}\left[\left(p −\frac{e}{c} A\right) \cdot \nabla A+ \left(p −\frac{e}{c} A\right)\times \left(\nabla \times A\right)\right] – e \nabla \phi, (7.22b)
where we have used ∇(G · G) = 2(G · ∇)G + 2G × (∇ ×G) with G = p − (e/c)A.