Given the Lagrangian
L = \frac{1}{2} \left(\dot{x} -\dot{y} \right)^{2} , (8.178)
find the primary constraints.
The Hessian matrix
W =\begin{pmatrix} \frac{\partial^{2}L}{\partial \dot{x}^{2} } & \frac{\partial^{2}L}{\partial \dot{x}\partial\dot{y} } \\ \\ \frac{\partial^{2}L}{\partial \dot{y}\partial\dot{x} } & \frac{\partial^{2}L}{\partial \dot{y}^{2} } \end{pmatrix} =\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} (8.179)
is clearly singular. The canonical momenta are given by
p_{x}=\frac{\partial L}{\partial \dot{x} }= \dot{x}-\dot{y}, p_{y}=\frac{\partial L}{\partial \dot{y} }= \dot{y}-\dot{x}. (8.180)
These equations are not independent and from them one derives
\phi = p_{x}+p_{y} =0, (8.181)
which is the only primary constraint.