Question 16.2: The following data refer to a gas turbine with a free power ......

The following data refer to a gas turbine with a free power turbine, operating at design speed.

Assuming that the power turbine is chocked, the value of m˙T04/P04\dot{m} \sqrt{T_{04}}/P_{04} being 220, determine the design values of compressor pressure ratio and turbine inlet temperature. Assume pressure losses in combustion chamber of 3% and assume the mechanical efficiency of the gas generator rotor to be 0.98 and take the ambient temperature as 288 K. The nondimensional flows quoted are based on m˙\dot{m} in kg/s, and P in bar and T in K, all pressures and temperatures being stagnation values.

Compressor characteristics Gas generator turbine characteristics
ηC\eta_{\text{C}} m˙T01/P01\dot{m}\sqrt{T_{01}}/P_{01} P02/P01P_{02}/P_{01} ηt\eta_{\text{t}} m˙T03/P03\dot{m}\sqrt{T_{03}}/P_{03} P03/P04P_{03}/P_{04}
6.0 250 0.83 2.8 100 0.85
5.6 270 0.84 2.5 100 0.85
5.2 290 0.83 2.2 95 0.85
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

For chocked free turbine m˙T04/P04\dot{m}\sqrt{T_{04}}/P_{04} = constant, or m˙T04/P04\dot{m}\sqrt{T_{04}}/P_{04} = 220. Compatibility of mass flow rate between two turbines

m˙T04P04=m˙T03P03×T04T03×P03P04\frac{\dot{m} \sqrt{T_{04}}} {P_{04}} =\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \times \sqrt{\frac{T_{04}}{T_{03}} } \times \frac{P_{03}}{P_{04}}

where

T04T03=1ηt(11π1Gt)\frac{T_{04}}{T_{03}} =1-\eta_{\text{t}}\left(1-\frac{1}{\pi_{1}^{\text{G}_{\text{t}}}} \right)

and πtπ_t is the pressure ratio of gas generator turbine and Gt=(γt1)/γtG_{\text{t}}=(\gamma_{\text{t}}-1)/\gamma_{\text{t}} .
Define the calculated mass flow parameter of the free power turbine as (m˙T04/P04)A(\dot{m}\sqrt{T_{04}}/P_{04})_{\text{A}}, which is calculated from Equation 1.

(m˙T04P04)A=m˙T03P03×[1ηt(11π1Gt)]0.5×πt(1)\left(\frac{\dot{m}\sqrt{T_{04}}}{P_{04}} \right) _{\text{A}}=\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \times \left[1-\eta_{\text{t}}\left(1-\frac{1}{\pi_1^{\text{G}_{\text{t}}}} \right) \right] ^{0.5} \times \pi_{\text{t}} \quad \quad \quad (1)

The calculated mass flow parameter of the free turbine (m˙T04/P04)A(\dot{m}\sqrt{T_{04}}/P_{04})_{\text{A}} is plotted together with the given choked value m˙T04/P04\dot{m}\sqrt{T_{04}}/P_{04} as shown in Figure 16.13.
The intersection point gives the matching point data; namely,

πt=P03P04=2.438 and m˙T03P03=98.9667\pi_{\text{t}}=\frac{P_{03}}{P_{04}} =2.438 \quad \text{ and } \quad \frac{\dot{m}\sqrt{T_{03}}}{P_{03}} =98.9667

Next, matching between the compressor and gas generator turbine may be done as follows:
Continuity equation

m˙T01P01=m˙T03P03T01T03P03P02P02P01=m˙T03P03T01T03πbπc=98.967×0.97T01T03×πcm˙T01P01=96T01T03×πc(2)\frac{\dot{m}\sqrt{T_{01}}}{P_{01}} =\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \sqrt{\frac{T_{01}}{T_{03}} }\frac{P_{03}}{P_{02}} \frac{P_{02}}{P_{01}} =\frac{\dot{m}\sqrt{T_{03}}}{P_{03}} \sqrt{\frac{T_{01}}{T_{03}} }\pi_{\text{b}}\pi_{\text{c}}=98.967 \times 0.97 \sqrt{\frac{T_{01}}{T_{03}} } \times \pi_{\text{c}} \\ \frac{\dot{m}\sqrt{T_{01}}}{P_{01}} =96 \sqrt{\frac{T_{01}}{T_{03}} } \times \pi_{\text{c}} \quad \quad \quad (2)

Power balance

m˙CPcT01×1ηC[πcGc1]=m˙CPtT03ηmηt[1(1πt)Gt]\dot{m}\text{C}_{\text{P}_{\text{c}}}T_{01} \times \frac{1}{\eta_{\text{C}}} \left[\pi_{\text{c}}^{\text{G}_{\text{c}}}-1\right] =\dot{m}\text{C}_{\text{P}_{\text{t}}}T_{03} \eta_{\text{m}}\eta_{\text{t}}\left[1-\left(\frac{1}{\pi_{\text{t}}} \right) ^{\text{G}_{\text{t}}}\right]

where Gc=(γc1)/γcG_{\text{c}}=(\gamma_{\text{c}}-1)/\gamma_{\text{c}},thus

T01T03=CPtCPcηtηm[1(1πt)Gt]ηCπcGc1T01T03=0.19ηCπcGc1(3)\frac{T_{01}}{T_{03}} =\frac{\text{C}_{\text{P}_{\text{t}}}}{\text{C}_{\text{P}_{\text{c}}}} \eta_{\text{t}}\eta_{\text{m}}\left[1-\left(\frac{1}{\pi_{\text{t}}} \right)^{\text{G}_{\text{t}}} \right] \frac{\eta_{\text{C}}}{\pi_{\text{c}}^{\text{G}_{\text{c}}}-1} \\ \frac{T_{01}}{T_{03}} =0.19 \frac{\eta_{\text{C}}}{\pi_{\text{c}}^{\text{G}_{\text{c}}}-1} \quad \quad \quad (3)

Equations (2) and (3) are used to calculate the mass flow parameter of the compressor that is tabulated in following table against the given input values for the compressor map:

Graphical solution of both values ((m˙T01/P10)calculated and (m˙T01/P01)map)\left(\left(\dot{m}\sqrt{T_{01}}/P_{10}\right) _{\text{calculated}} \text{ and }(\dot{m}\sqrt{T_{01}}/P_{01})_{\text{map}}\right) gives the following results for the compressor operating point:

πc=5.6,ηc=0.84,T01T03=0.2506andm˙T01P01=269.5\pi_{\text{c}}=5.6, \quad \eta_{\text{c}}=0.84, \quad \frac{T_{01}}{T_{03}} =0.2506 \quad \text{and} \quad \frac{\dot{m}\sqrt{T_{01}}}{P_{01}} =269.5

The turbine inlet temperature is then

T03=T010.2506=2880.2506=1149.24 KT_{03}=\frac{T_{01}}{0.2506} =\frac{288}{0.2506} =1149.24 \text{ K}

P03/P04P_{03}/P_{04} ηt\eta_{\text{t}} m˙T03/P03\dot{m}\sqrt{T_{03}}/P_{03} (11πtGt)\left(1-\frac{1}{\pi_{\text{t}}^{\text{Gt}}} \right) [1ηt(11πtGt)]0.5×πt\left[1-\eta_{\text{t}}\left(1-\frac{1}{\pi_{\text{t}}^{\text{Gt}}} \right) \right] ^{0.5} \times \pi_{\text{t}} (m˙T04/P04)A(\dot{m}\sqrt{T_{04}}/P_{04})_{\text{A}}
2.8 0.85 100 0.2269 2.5155 251.54
2.5 0.85 100 0.2047 2.2721 227.2
2.2 0.84 95 0.1789 2.0279 192.7

 

πc\pi_{\text{c}} ηc\eta_{\text{c}} T01T03\frac{T_{01}}{T_{03}} (m˙T01P01)calculated\left(\frac{\dot{m}\sqrt{T_{01}}}{P_{01}} \right) _{\text{calculated}} (m˙T01P01)map\left(\frac{\dot{m}\sqrt{T_{01}}}{P_{01}} \right) _{\text{map}}
6.0 0.83 0.2356 279.6 250
5.6 0.84 0.2506 269.19 270
5.2 0.83 0.2618 255.5 290

 

16.13

Related Answered Questions