Question 22.8: Suppose we mix 50.0 mL of 1.00 × 10^−2 M AgNO3(aq) with 100.......

Suppose we mix 50.0 mL of 1.00 × 10^{−2}\ M\ AgNO_{3}(aq) with 100.0 mL of 2.00 × 10^{−4}\ M\ K_{2}CrO_{4}(aq) at 25°C. Does Ag_{2}CrO_{4}(s) precipitate from the solution? If yes, then calculate how many millimoles of Ag_{2}CrO_{4}(s) precipitate.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The chemical equation for the precipitation reaction is

2\ Ag^+(aq) + CrO_{4}^{2−}(aq) ⇋ Ag_{2}CrO_{4}(s)              (22.18)

and from Table 22.1, we have for the solubility equilibrium defined by the reverse of Equation 22.18

[Ag^+]^{2}[CrO_{4}^{2-}] = K_{sp} = 1.1 × 10^{-12}\ M^3

The concentration of Ag^+(aq) immediately after mixing is

[Ag^+]_{0} =\frac{(50.0\ mL)(1.00 × 10^{–2}\ M)}{150.0\ mL} =3.33 × 10^{–3}\ M

and the concentration of CrO_{4}^{2-}(aq) immediately after mixing is

[CrO_{4}^{2-}]_{0}=\frac{(100.0\ mL)(2.00 × 10^{–4}\ M)}{150.0\ mL} =1.33 × 10^{–4}\ M

Therefore, the value of Q_{sp} is

Q_{sp} = [Ag^+]^2_{0} [CrO_{4}^{2−}]_{0} = (3.33 × 10^{−3}\ M)^2(1.33 × 10^{−4}\ M) = 1.47 × 10^{−9}\ M^3

Because Q_{sp} \gt K_{sp}, precipitation of Ag_{2}CrO_{4}(s) results.

To determine how much Ag_{2}CrO_{4}(s) precipitates, we must determine which, if either, reactant in Equation 22.18 is a limiting reactant. The amount of Ag^+(aq) added is given by (50.0 mL)(1.00 × 10^{-2}\ M) = 0.500 mmol, and the amount of CrO_{4}^{2-}(aq) added is given by (100.0\ mL)(2.00 × 10^{-4}\ M) = 0.0200\ mmol. Because the 0.0200 mmol of CrO_{4}^{2-}(aq) requires only 0.0400 mmol of Ag^+(aq) to react completely, we see that Ag^+(aq) is in great excess and that CrO_{4}^{2-}(aq) is a limiting reactant. Therefore, essentially 0.0200 mmol of Ag_{2}CrO_{4}(s) precipitates.

Because the value of K_{sp} for the dissolution of Ag_{2}CrO_{4}(s) is extremely small (1.1 × 10^{-12}\ M^3), we can neglect the amount of product that remains in solution compared to the amount that precipitates. 

TABLE 22.1 Solubility-product constants for various salts in water at 25°C
Bromates K_{sp} Cyanides K_{sp} Oxalates K_{sp}
AgBrO_{3} 5.4 × 10^{-5}\ M^{2} AgCN 6.0 × 10^{-17}\ M^{2} Ag_{2}C_{2}O_{4} 5.4 × 10^{-12}\ M^{3}
Ba(BrO_{3})_{2} 2.4 × 10^{-4}\ M^{3} CuCN 3.5 × 10^{-20}\ M^{2} CaC_{2}O_{4} 4 × 10^{-9}\ M^{2}
Pb(BrO_{3})_{2} 7.9 × 10^{-6}\ M^{2} Hg_{2}(CN)_{2}{^*} 5 × 10^{-40}\ M^{3} MgC_{2}O_{4} 7 × 10^{-7}\ M^{2}
TlBrO_{3} 1.1 × 10^{-4}\ M^{2} Zn(CN)_{2} 3 × 10^{-16}\ M^{3} SrC_{2}O_{4} 4 × 10^{-7}\ M^{2}
Bromides K_{sp} Fluorides K_{sp} Sulfates K_{sp}
AgBr 5.4 × 10^{-13}\ M^{2} BaF_{2} 1.8 × 10^{-7}\ M^{3} Ag_{2}SO_{4} 1.2 × 10^{-5}\ M^{3}
CuBr 6.3 × 10^{-9}\ M^{2} CaF_{2} 3.5 × 10^{-11}\ M^{3} BaSO_{4} 1.1 × 10^{-10}\ M^{2}
Hg_{2}Br_{2}{^*} 6.4 × 10^{-23}\ M^{3} LiF 1.8 × 10^{-3}\ M^{2} CaSO_{4} 4.9 × 10^{-5}\ M^{2}
HgBr_{2} 6.2 × 10^{-20}\ M^{3} MgF_{2} 5.2 × 10^{-11}\ M^{3} Hg_{2}SO_{4} 6.5 × 10^{-7}\ M^{2}
PbBr_{2} 6.6 × 10^{-6}\ M^{3} PbF_{2} 3.3 × 10^{-8}\ M^{3} PbSO_{4} 2.5 × 10^{-8}\ M^{2}
TlBr 3.7 × 10^{-6}\ M^{2} SrF_{2} 4.3 × 10^{-9}\ M^{3} SrSO_{4} 3.4 × 10^{-7}\ M^{2}
Carbonates K_{sp} Hydroxides K_{sp} Sulfides K_{sp}
Ag_{2}CO_{3} 8.5 × 10^{-12}\ M^{3} Al(OH)_{3} 1.3 × 10^{-33}\ M^{4} Ag_{2}S 8 × 10^{-51}\ M^{3}
BaCO_{3} 2.6 × 10^{-9}\ M^{2} Ca(OH)_{2} 5.0 × 10^{-6}\ M^{3} CdS 8.0 × 10^{-27}\ M^{2}
CaCO_{3} 3.4 × 10^{-9}\ M^{2} Cd(OH)_{2} 7.2 × 10^{-15}\ M^{3} CoS 5 × 10^{-22}\ M^{2}
CdCO_{3} 1.0 × 10^{-12}\ M^{2} Co(OH)_{2} 5.9 × 10^{-15}\ M^{3} CuS 6.3 × 10^{-36}\ M^{2}
CoCO_{3} 1.0 × 10^{-10}\ M^{2} Cr(OH)_{3} 6.3 × 10^{-31}\ M^{4} FeS 6.3 × 10^{-18}\ M^{2}
CuCO_{3} 1.4 × 10^{-10}\ M^{2} Cu(OH)_{2} 2.2 × 10^{-20}\ M^{3} HgS 4 × 10^{-53}\ M^{2}
FeCO_{3} 3.1 × 10^{-11}\ M^{2} Fe(OH)_{2} 4.9 × 10^{-17}\ M^{3} MnS 2.5 × 10^{-13}\ M^{2}
MgCO_{3} 6.8 × 10^{-6}\ M^{2} Fe(OH)_{3} 2.8 × 10^{-39}\ M^{4} NiS 1.3 × 10^{-25}\ M^{2}
MnCO_{3} 2.2 × 10^{-11}\ M^{2} Mg(OH)_{2} 5.6 × 10^{-12}\ M^{3} PbS 8.0 × 10^{-28}\ M^{2}
NiCO_{3} 1.4 × 10^{-7}\ M^{2} Ni(OH)_{2} 5.5 × 10^{-16}\ M^{3} SnS 1.0 × 10^{-25}\ M^{2}
PbCO_{3} 7.4 × 10^{-14}\ M^{2} Pb(OH)_{2} 1.4 × 10^{-20}\ M^{3} Tl_{2}S 6 × 10^{-22}\ M^{3}
SrCO_{3} 5.6 × 10^{-10}\ M^{2} Sn(OH)_{2} 5.5 × 10^{-27}\ M^{3} ZnS 1.6 × 10^{-24}\ M^{2}
ZnCO_{3} 1.5 × 10^{-10}\ M^{2} Zn(OH)_{2} 1.0 × 10^{-15}\ M^{3}
Chlorides K_{sp} Iodates K_{sp} Thiocyanates K_{sp}
AgCl 1.8 × 10^{-10}\ M^2 AgIO_{3} 3.2 × 10^{-8}\ M^2 AgSCN 1.0 × 10^{-12}\ M^2
CuCl 1.7× 10^{-7}\ M^2 Ba(IO_{3})_{2} 4.0 × 10^{-9}\ M^3 CuSCN 1.8 × 10^{-13}\ M^2
Hg_{2}Cl_{2}{^*} 1.4 × 10^{-18}\ M^3 Ca(IO_{3})_{2} 6.5 × 10^{-6}\ M^3 Cu(SCN)_{2} 4.0 × 10^{-14}\ M^3
PbCl_{2} 1.5 × 10^{-5}\ M^3 Cd(IO_{3})_{2} 2.5 × 10^{-8}\ M^3 Hg_{2}(SCN)_{2}{^*} 3.2 × 10^{-20}\ M^3
TlCl 1.9 × 10^{-4}\ M^2 Cu(IO_{3})_{2} 7.4 × 10^{-8}\ M^3 Hg(SCN)_{2} 2.8 × 10^{-20}\ M^3
Pb(IO_{3})_{2} 3.7 × 10^{-13}\ M^3 TlSCN 1.6 × 10^{-4}\ M^2
TlIO_{3} 3.1 × 10^{-6}\ M^2
Zn(IO_{3})_{2} 3.9 × 10^{-6}\ M^3
Chromates K_{sp} Iodides K_{sp}
Ag_{2}CrO_{4} 1.1 × 10^{-12}\ M^{3} AgI 8.5 × 10^{-17}\ M^{2}  

 

 

 

 

*Hg(I) exists as Hg_{2}^{2+}(aq)
in aqueous solution.

BaCrO_{4} 1.2 × 10^{-10}\ M^{2} CuI 1.3 × 10^{-12}\ M^{2}
CuCrO_{4} 3.6 × 10^{-6}\ M^{2} Hg_{2}I_{2}{^*} 5.2 × 10^{-29}\ M^{3}
Hg_{2}CrO_{4}{^*} 2.0 × 10^{-9}\ M^{2} HgI_{2} 2.9 × 10^{-29}\ M^{3}
PbCrO_{4} 2.8 × 10^{-13}\ M^{2} PbI_{2} 9.8 × 10^{-9}\ M^{3}
Tl_{2}CrO_{4} 8.7 × 10^{-13}\ M^{3} TlI 5.5 × 10^{-8}\ M^{2}

Related Answered Questions

Question: 22.5

Verified Answer:

The two relevant equations are AgCl(s) ⇋ Ag...
Question: 22.3

Verified Answer:

The solubility of PbI_{2}(s) in mol...