Calculate the values of ΔG^{\circ}_{rxn} and K at 25°C for the equation
PCl_{3}(g) + Cl_{2}(g) ⇋ PCl_{5}(g)Application of Equation 23.26 to this equation yields
ΔG^{\circ}_{rxn} = yΔG^{\circ}_{f}[Y] – zΔG^{\circ}_{f}[Z] – aΔG^{\circ}_{f}[A]-bΔG^{\circ}_{f}[B] (23.26)
ΔG^{\circ}_{rxn} = ΔG^{\circ}_{f}[PCl_{5}(g)] – ΔG^{\circ}_{f}[PCl_{3}(g)] – ΔG^{\circ}_{f}[Cl_{2}(g)]The data from Table 23.1 yield
The negative value of ΔG^{\circ}_{rxn} tells us that the reaction between PCl_{3}(g) and Cl_{2}(g) to produce PCl_{5}(g) is a spontaneous process under standard conditions at 25°C. The value of the equilibrium constant, K, for the reaction as described by the above equation is calculated using Equation 23.19:
ΔG^{\circ}_{rxn} = –RT\ ln\ K (23.19)
ln\ K = –\frac{ΔG^{\circ}_{rxn}}{RT} =-\frac{–37.2 × 10^3\ J·mol^{–1}}{(8.3145\ J·K^{–1}·mol^{–1})(298\ K)} =15.0Thus,
K = e^{15.0} = 3 × 10^6TABLE 23.1 Standard molar entropies (S°), enthalpies of formation (\Delta H^{\circ}_{f} ), and Gibbs energies of formation (\Delta G^{\circ}_{f} ) of various substances at 25°C and one bar (see also Appendix D)* | |||||||
Substance | S^{\circ}/J\cdot K^{−1}\cdot mol^{−1} | \Delta H^{\circ}_{f}/kJ\cdot mol^{-1} | \Delta G^{\circ}_{f}/kJ\cdot mol^{-1} | Substance | S^{\circ}/J\cdot K^{−1}\cdot mol^{−1} | \Delta H^{\circ}_{f}/kJ\cdot mol^{-1} | \Delta G^{\circ}_{f}/kJ\cdot mol^{-1} |
Ag(s) | 42.6 | 0 | 0 | H_{2}O_{2}(l) | 109.6 | –187.8 | –120.4 |
AgCl(s) | 96.3 | –127.0 | –109.8 | H_{2}S(g) | 205.8 | –20.6 | –33.4 |
C(s,\ diamond) | 2.4 | 1.9 | 2.9 | N(g) | 153.3 | 472.7 | 455.5 |
C(s,\ graphite) | 5.7 | 0 | 0 | N_2(g) | 191.6 | 0 | 0 |
CH_{4}(g) | 186.3 | –74.6 | –50.5 | NH_{3}(g) | 192.8 | –45.9 | –16.4 |
C_{2}H_{2}(g) | 200.9 | 227.4 | 209.9 | N_{2}H_{4}(l ) | 121.2 | 50.6 | 149.3 |
C_{2}H_{4}(g) | 219.3 | 52.4 | 68.4 | NO(g) | 210.8 | 91.3 | 87.6 |
C_{6}H_{6}(l) | 173.4 | 49.1 | 124.5 | NO_{2}(g) | 240.1 | 33.2 | 51.3 |
CH_{3}OH(l ) | 126.8 | –239.2 | –166.6 | N_{2}O(g) | 220.0 | 81.6 | 103.7 |
CH_{3}Cl(g) | 234.6 | –81.9 | –58.4 | N_{2}O_{4}(g) | 304.4 | 11.1 | 99.8 |
CH_{3}Cl(l ) | 145.3 | –102 | –51.5 | N_{2}O_{5}(s) | 178.2 | –43.1 | 113.9 |
CH_{2}Cl_{2}(g) | 270.2 | –95.4 | –68.8 | Na(g) | 153.7 | 107.5 | 77.0 |
CH_{2}Cl_{2}(l ) | 177.8 | –124.2 | –70.0 | Na(s) | 51.3 | 0 | 0 |
CHCl_{3}(g) | 295.7 | –102.7 | 6.0 | O(g) | 161.1 | 249.2 | 231.7 |
CHCl_{3}(l) | 201.7 | –134.1 | –73.7 | O_{2}(g) | 205.2 | 0 | 0 |
CO(g) | 197.7 | –110.5 | –137.2 | P(s, white) | 41.1 | 0 | 0 |
CO_{2}(g) | 213.8 | –393.5 | –394.4 | P(s, red) | 22.8 | –17.6 | –12.1 |
Cl(g) | 165.2 | 121.3 | 105.3 | PCl_3(g) | 311.8 | –287.0 | –267.8 |
Cl_{2}(g) | 223.1 | 0 | 0 | PCl_5(g) | 364.6 | –374.9 | –305.0 |
H(g) | 114.7 | 218.0 | 203.3 | S(s, rhombic) | 28.5 | 0 | 0 |
H_{2}(g) | 130.7 | 0 | 0 | S(s, monoclinic) | 32.6 | 0.3 | 0.1 |
H_{2}O(g) | 188.8 | –241.8 | –228.6 | SO_{2}(g) | 248.2 | –296.8 | –300.1 |
H_{2}O(l) | 70.0 | –285.8 | –237.1 | SO_{3}(g) | 256.8 | –395.7 | –371.1 |
*Most data from CRC Handbook of Chemistry and Physics, 87th Online Edition, 2006–2007. |