The standard voltage of the cell
Zn(s)|ZnSO_{4}(aq)||CuSO_{4}(aq)|Cu(s)at 25.0°C is E^{\circ}_{cell} = 1.10\ V. Given that E^{\circ}_{red} = -0.76\ V for the electrode half reaction described by
Zn^{2+}(aq, 1\ M) + 2\ e^− → Zn(s)calculate E^{\circ}_{red} at 25.0°C for the electrode half reaction given by
Cu^{2+}(aq, 1\ M) + 2\ e^− → Cu(s)The oxidation takes place at the left-hand electrode, so the half reaction equations are
Zn(s) → Zn^{2+}(aq) + 2\ e^− (oxidation)
Cu^{2+}(aq) + 2\ e^− → Cu(s) (reduction)
Because
E^{\circ}_{ox}[Zn|Zn^{2+}] = –E^{\circ}_{red}[Zn|Zn^{2+}] = +0.76\ Vwe have
E^{\circ}_{cell} = E^{\circ}_{red}[Cu^{2+}|Cu] + E^{\circ}_{ox}[Zn|Zn^{2+}] = E^{\circ}_{red}[Cu^{2+}|Cu] + 0.76\ V = 1.10\ Vand so
E^{\circ}_{red}[Cu^{2+}|Cu] = 1.10\ V – 0.76\ V = +0.34\ VThus, the standard reduction voltage of the Cu^{2+}(aq)|Cu(s) electrode is E^{\circ}_{red} = +0.34\ V at 25.0°C, in agreement with the value listed in Table 25.3. Therefore, the standard reduction voltage of an electrode can be obtained from the standard cell voltage of a cell for which the standard reduction voltage of the other electrode is known.
TABLE 25.3 Standard reduction voltages at 25.0°C for aqueous solutions (see also Aِِppendix G)* | |||
Electrode half reaction | E^{\circ}_{red}/V | ||
\uparrow |
Acidic solutions |
increasing strength |
|
F_{2}(g) + 2\ e^− → 2\ F^−(aq) | +2.866 | ||
O_{3}(g) + 2\ H^+(aq) + 2\ e^− → O_{2}(g) + H_2O(l ) | +2.076 | ||
Co^{3+}(aq) + e^− → Co^{2+}(aq) | +1.92 | ||
Cl_{2}(g) + 2\ e^− → 2\ Cl^−(aq) | +1.358 | ||
O_{2}(g) + 4\ H^+(aq) + 4\ e^− → 2\ H_2O(l ) | +1.229 | ||
Pt^{2+}(aq) + 2\ e^– → Pt(s) | +1.18 | ||
NO_{3}^{–}(aq) + 4\ H^+(aq) + 3\ e^– → NO(g) + 2\ H_2O(l ) | +0.957 | ||
Ag^+(aq) + e^− → Ag(s) | +0.7996 | ||
Cu^+(aq) + e^− → Cu(s) | +0.521 | ||
Cu^{+2}(aq) +2\ e^− → Cu(s) | +0.342 | ||
Hg_2Cl_2(s) + 2\ e^− → 2\ Hg(l ) + 2\ Cl^−(aq) | +0.268 | ||
AgCl(s) + e^− → Ag(s) + Cl^−(aq) | +0.2223 | ||
Cu^{2+}(aq) + e^− → Cu^+(aq) | +0.153 | ||
2\ H^+(aq) + 2\ e^− → H_2(g) | +0.0 | ||
Pb^{2+}(aq) + 2\ e^− → Pb(s) | -0.126 | ||
V^{3+}(aq) + e^− → V^{2+}(aq) | -0.255 | ||
Fe^{2+}(aq) + 2\ e^– → Fe(s) | –0.447 | ||
Zn^{2+}(aq) + 2\ e^− → Zn(s) | -0.762 | ||
Mn^{2+}(aq) + 2\ e^– → Mn(s) | –1.185 | ||
Al^{3+}(aq) + 3\ e^− → Al(s) | -1.662 | ||
H_2(g) + 2\ e^− → 2\ H^−(aq) | -2.23 | ||
Mg^{2+}(aq) + 2\ e^− → Mg(s) | -2.372 | ||
Na^+(aq) + e^− → Na(s) | -2.71 | ||
Ca^{2+}(aq) + 2\ e^– → Ca(s) | –2.868 | ||
K^+(aq) + e^– → K(s) | –2.931 | ||
Li^+(aq) + e^− → Li(s) | -3.0401 | ||
Basic solutions | |||
O_2(g) + 2\ H_2O(l ) + 4\ e^− → 4\ OH^−(aq) | +0.401 | ||
Cu(OH)_2(s) + 2\ e^− → Cu(s) + 2\ OH^−(aq) | -0.222 | ||
Fe(OH)_3(s) + e^– → Fe(OH)_2(s) + OH^–(aq) | –0.56 | ||
2\ H_2O(l ) + 2\ e^− → H_2(g) + 2\ OH^−(aq) | -0.8277 | ||
2\ SO_{3}^{2−}(aq) + 2\ H_2O(l) + 2\ e^− → S_{2}O_{4}^{2−}(aq) + 4\ OH^−(aq) | -1.12 | ||
*Data from CRC Handbook of Chemistry and Physics, 87th ed., ed. David R. Lide, CRC Press, 2006–2007 |