Question 25.8: Use the data in Table 25.3 to determine whether Co^3+(aq), a......

Use the data in Table 25.3 to determine whether Co^{3+}(aq), a fairly strong oxidizing agent, is capable of oxidizing water to O_2(g) in acidic aqueous solution under standard conditions at 25.0°C, according to the equation

4\ Co^{3+}(aq) + 2\ H_2O(l) → 4\ Co^{2+}(aq) + O_2(g) + 4\ H^+(aq)
TABLE 25.3 Standard reduction voltages at 25.0°C for aqueous solutions (see also Appendix G)*
Electrode half reaction E^{\circ}_{red}/V
 

 

 

 

\uparrow
increasing strength
of oxidizing agents

Acidic solutions  

 

 

 

increasing strength
of reducing agents
\downarrow

F_{2}(g) + 2\ e^− → 2\ F^−(aq) +2.866
O_{3}(g) + 2\ H^+(aq) + 2\ e^− → O_{2}(g) + H_2O(l ) +2.076
Co^{3+}(aq) + e^− → Co^{2+}(aq) +1.92
Cl_{2}(g) + 2\ e^− → 2\ Cl^−(aq) +1.358
O_{2}(g) + 4\ H^+(aq) + 4\ e^− → 2\ H_2O(l ) +1.229
Pt^{2+}(aq) + 2\ e^– → Pt(s) +1.18
NO_{3}^{–}(aq) + 4\ H^+(aq) + 3\ e^– → NO(g) + 2\ H_2O(l ) +0.957
Ag^+(aq) + e^− → Ag(s) +0.7996
Cu^+(aq) + e^− → Cu(s) +0.521
Cu^{+2}(aq) +2\ e^− → Cu(s) +0.342
Hg_2Cl_2(s) + 2\ e^− → 2\ Hg(l ) + 2\ Cl^−(aq) +0.268
AgCl(s) + e^− → Ag(s) + Cl^−(aq) +0.2223
Cu^{2+}(aq) + e^− → Cu^+(aq) +0.153
2\ H^+(aq) + 2\ e^− → H_2(g) +0.0
Pb^{2+}(aq) + 2\ e^− → Pb(s) -0.126
V^{3+}(aq) + e^− → V^{2+}(aq) -0.255
Fe^{2+}(aq) + 2\ e^– → Fe(s) –0.447
Zn^{2+}(aq) + 2\ e^− → Zn(s) -0.762
Mn^{2+}(aq) + 2\ e^– → Mn(s) –1.185
Al^{3+}(aq) + 3\ e^− → Al(s) -1.662
H_2(g) + 2\ e^− → 2\ H^−(aq) -2.23
Mg^{2+}(aq) + 2\ e^− → Mg(s) -2.372
Na^+(aq) + e^− → Na(s) -2.71
Ca^{2+}(aq) + 2\ e^– → Ca(s) –2.868
K^+(aq) + e^– → K(s) –2.931
Li^+(aq) + e^− → Li(s) -3.0401
Basic solutions
O_2(g) + 2\ H_2O(l ) + 4\ e^− → 4\ OH^−(aq) +0.401
Cu(OH)_2(s) + 2\ e^− → Cu(s) + 2\ OH^−(aq) -0.222
Fe(OH)_3(s) + e^– → Fe(OH)_2(s) + OH^–(aq) –0.56
2\ H_2O(l ) + 2\ e^− → H_2(g) + 2\ OH^−(aq) -0.8277
2\ SO_{3}^{2−}(aq) + 2\ H_2O(l) + 2\ e^− → S_{2}O_{4}^{2−}(aq) + 4\ OH^−(aq) -1.12
*Data from CRC Handbook of Chemistry and Physics, 87th ed., ed. David R. Lide, CRC Press, 2006–2007
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The oxidation of H _{2}O(l ) to O_2(g) by Co^{3+}(aq) under standard conditions (Q = 1) will be a spontaneous process if E^{\circ}_{cell} = E^{\circ}_{red}+E^{\circ}_{ox} is greater than zero. The two half reaction equations are

4\ Co^{3+}(aq) + 4\ e^− → 4\ Co^{2+}(aq) \qquad E^{\circ}_{red} = +1.92\ V

2\ H_2O(l) → O_2(g) + 4\ H^+(aq) + 4\ e^− \qquad E^{\circ}_{ox} = –E^{\circ}_{red} = –1.23\ V

The E^{\circ}_{red} values for the two half reactions were obtained from Table 25.3. The value of E^{\circ}_{cell} is

E^{\circ}_{cell} = E^{\circ}_{red}[Co^{3+}|Co^{2+}] + E^{\circ}_{ox}[H_2O|O_2] = (1.92\ V) + (–1.23\ V) = +0.69\ V

Again note that we do not multiply the value of E^{\circ}_{red}[Co^{3+}|Co^{2+}] by 4 because the magnitude of a cell voltage or half-cell voltage is independent of the quantity of material involved or how we choose to (arbitrarily) write the equations that describe the cell reaction. The positive value of E^{\circ}_{cell} means that Co^{3+}(aq) is capable of oxidizing water at 25.0°C under standard conditions. The rate of oxidation of water by Co^{3+}(aq) is fairly rapid at 25.0°C, and so Co^{3+}(aq) does not persist at appreciable concentrations in water.

Related Answered Questions