Question 17.p.4: The information given includes the equilibrium constant, ini......

The information given includes the equilibrium constant, initial pressures of both reactants and equilibrium pressure for one reactant. First, set up a reaction table showing initial partial pressures for reactants and 0 for product. The change to get to equilibrium is to react some of reactants to form some product. The mole ratio between \text{NO:O}_2\text{:NO}_2\text{ is }2: 1 :2. Use the equilibrium quantity for \text{O}_2 and the expression for \text{O}_2 at equilibrium to solve for the change. From the change find the equilibrium partial pressure for \text{NO and NO}_2.\text{ Calculate }K_\text{p} using the equilibrium values.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.
\begin{matrix} \text{Pressures (atm)} & \text{2 NO(g)}+& & \text{O}_2\text{(g)} & \leftrightarrows & \text{2 NO}_2\text{(g)} \\ \text{Initial} & 1.000 && 1.000 & & 0 \\ \text{Change} & -2\text{ x} && -\text{x} & & +2\text{ x} & \text{(2:1:2 mole ratio)} \end{matrix} \\ \begin{matrix} && \overline{\begin{matrix} \text{Equilibrium} & 1.000-2\text{ x} & 1.000-\text{x} & & &2\text{ x}& \end{matrix} } \end{matrix} \\ \begin{matrix} \quad\quad\text{At equilibrium} & \text{P}_{\text{O}_2} = 0.506\text{ atm = 1.000 -x; so x = 1.000 -0.506 = 0.494 atm} \\ & \text{P}_\text{NO} = 1.000 – 2\text{ x = 1.000 -2(0.494) = 0.012 atm}\quad\quad\quad\quad\quad \\ & \text{P}_{\text{NO}_2} = 2\text{ x = 2 (0.494) = 0.988 atm}\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \end{matrix}

Use the equilibrium pressures to calculate K_\text{p}.

K_\text{p}=\frac{\text{P}^2_{\text{NO}_2}}{\text{P}^2_\text{NO}\text{P}_{\text{O}_2}} =\frac{(0.988)^2}{(0.012)^2(0.506)} =1.339679\times 10^4=1.3\times 10^4

Check: One way to check is to plug the equilibrium expressions for \text{NO and NO}_2 into the equilibrium expression along with 0.506 atm for the equilibrium pressure of \text{O}_2. Then solve for x and make sure the value of x by this calculation is the same as the 0.494 atm calculated above.

1.3\times 10^4=\frac{(2\text{x})^2(0.506)}{(1.000-2\text{x})^2} \\ (1.3\times 10^4)/0.506=2.569\times 10^4=\frac{(2\text{x})^2}{(1.000-2\text{x})^2} \\ \sqrt{2.569\times 10^4} =\frac{(2\text{x})}{(1.000-2\text{x})} \\ \text{x}=0.497

The two values for x agree to give K_\text{p} = 1.3\times 10^4.

Related Answered Questions

Question: 17.68

Verified Answer:

a) K_\text{p} = K_\text{c}(\text{RT})^{Δn} ...
Question: 17.65

Verified Answer:

K_\text{p} = K_\text{c}(\text{RT})^{Δn} \qu...
Question: 17.p.6

Verified Answer:

\text{The initial [HI]}=\frac{2.50\text{ mo...
Question: 17.p.1

Verified Answer:

a) Balanced equation: 4\text{ NH}_3\text{(g...