Question 17.76: a) Write a reaction table given that PCH4 (init) = PCO2 (ini......

a) Write a reaction table given that \text{P}_{\text{CH}_4}\text{ (init) = P}_{\text{CO}_2}\text{ (init) = 10.0 atm}, substitute equilibrium values into the equilibrium expression, and solve for \text{P}_{\text{H}_2}.

b) Repeat the calculations for part (a) with the new K_\text{p} value. The reaction table is the same.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a)

\begin{matrix} \text{Pressure (atm)} && \text{CH}_4\text{(g)}+ &\text{CO}_2\text{(g)} \leftrightarrows & \text{2 CO(g)}+ & 2\text{ H}_2\text{(g)} \\ \text{Initial} && 10.0 & 10.0 & 0 & 0 \\ \text{Change} && -\text{x} & -\text{x} & +\text{2 x} & +\text{2 x}\end{matrix} \\ \begin{matrix} & \overline{\begin{matrix} \text{Equilibrium} && 10.0-\text{x} && 10.0-\text{x} &&&& \text{2 x}&&&\text{2 x } \ \end{matrix} } \end{matrix} \\ K_\text{p}=\frac{\text{P}_\text{CO}^2\text{ P}_{\text{H}_2}^2}{\text{P}_{\text{CH}_4}\text{ P}_{\text{CO}_2}} =\frac{(\text{2 x)}^2(\text{2 x)}^2}{(10.0-\text{x})(10.0-\text{x})} =\frac{(\text{2 x)}^4}{(10.0-\text{x})^2} =3.548\times 10^6\text{ (take square root of each side)} \\ \frac{(\text{2 x)}^2}{(10.0-\text{x})}=1.8836135\times 10^3

A quadratic is necessary:
4\text{ x}^2 + (1.8836135 \times 10^3 \text{ x}) – 1.8836135 \times 10^4 = 0\text{ (unrounded)} \\ \text{a} = 4\quad\quad \text{b} = 1.8836135 \times 10^3\text{ c} = -1.8836135 \times 10^4 \\ \text{x}=\frac{-\text{b}\pm \sqrt{\text{b}^2-4\text{ac}} }{2\text{a}} \\ \text{x}=\frac{-1.8836135\times 10^3\pm \sqrt{(1.8836135\times 10^3)^2-4(4)(-1.8836135\times 10^4)} }{2(4)}

x = 9.796209 (unrounded)
P (hydrogen) = 2 x = 2 (9.796209) = 19.592418 atm (unrounded)
If the reaction proceeded entirely to completion, the partial pressure of \text{H}_2 would be 20.0 atm (pressure is proportional to moles, and twice as many moles of \text{H}_2 form for each mole of \text{CH}_4\text{ or CO}_2 that reacts).

\text{The percent yield is }\frac{19.592418\text{ atm}}{20.0\text{ atm}} (100\%)=97.96209=98.0\%

b)

K_\text{p}=\frac{\text{P}_\text{CO}^2\text{ P}_{\text{H}_2}^2}{\text{P}_{\text{CH}_4}\text{ P}_{\text{CO}_2}} =\frac{(\text{2 x)}^2(\text{2 x)}^2}{(10.0-\text{x})(10.0-\text{x})} =\frac{(\text{2 x)}^4}{(10.0-\text{x})^2} =2.626\times 10^7 \\ \frac{(\text{2 x)}^2}{(10.0-\text{x})}=5.124451\times 10^3

A quadratic is needed:
4\text{ x}^2+ (5.124451 \times 10^3 – 5.124451 \times 10^4=0 \text{ (unrounded)} \\ \text{a}=4\quad\quad \text{b} =5.124451 \times 10^3 \text{ c}=- 5.124451 \times 10^4 \\ \text{x}=\frac{-5.124451\times 10^3\pm \sqrt{(5.124451\times 10^3)^2-4(4)(-5.124451\times 10^4)} }{2(4)}

x = 9.923138 (unrounded)
P (hydrogen) = 2 x = 2 (9.923138) = 19.846276 atm (unrounded)
If the reaction proceeded entirely to completion, the partial pressure of \text{H}_2 would be 20.0 atm (pressure is proportional to moles, and twice as many moles of \text{H}_2 form for each mole of \text{CH}_4\text{ or CO}_2 that reacts).

\text{The percent yield is }\frac{19.846276\text{ atm}}{20.0\text{ atm}} (100\%)=99.23138=99.0\%

Related Answered Questions

Question: 17.68

Verified Answer:

a) K_\text{p} = K_\text{c}(\text{RT})^{Δn} ...
Question: 17.65

Verified Answer:

K_\text{p} = K_\text{c}(\text{RT})^{Δn} \qu...
Question: 17.p.6

Verified Answer:

\text{The initial [HI]}=\frac{2.50\text{ mo...
Question: 17.p.1

Verified Answer:

a) Balanced equation: 4\text{ NH}_3\text{(g...