Question 11.2: A CAES storage plant comprising an air compressor, undergrou......

A CAES storage plant comprising an air compressor, underground compressed air storage, gas turbine with a combustor, and an HRSG is operating as follows:

• Electric power output of peaking gas turbine–generator train is PelP_{el} = 100 MWe
• Storage cavern charging period (compression) duration is τc\tau_{c} = 5 h
• Power generation period duration is τg\tau_{g} = 8 h
• Compressor intake is at t1t_{1} = 15°C and p1p_{1} = 100 kPa and discharge is at p2p_{2} = 6.4 MPa
• Supplementary firing raises the compressed-air temperature to a turbine inlet temperature t3t_{3} of 1050°C
• Fuel: natural gas with an LHV of 49 MJ/kg
• Compressor and turbine isentropic efficiencies ηic\eta_{ic} and ηit\eta_{it} are 0.85 and 0.8, respectively

Assuming a constant specific heat for the air of 1.05 kJ/(kg K) in the entire temperature range, calculate (i) the required energy storage capacity, (ii) the mass of air required for the storage, (iii) the total fuel requirements for the generation period per hour, (iv) the volume of the air storage cavern, (v) the air flow rate, and (vi) the fuel flow rate.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1. The required energy storage capacity is equal to the total energy input to the gas turbine train during the power generation period. Thus, taking into account the energy losses during generation

Qs=P tg/hit=100×8/0.8=1000  MWhQ_{s}=P\mathbf{\mathrm{\bf~t}}_{g}/\mathbf{h}_{it}\,=\,100\times8/0.8\,=\,1000\,\,\mathrm{MW}\,\mathrm{h}

2. With T1T_{1} = 15°C + 273 = 288 K, air temperature after isentropic (reversible) and actual (irreversible) zero compression with a pressure ratio β\beta = p2p_{2}/p1p_{1} = 6.4 MPa/0.1 MPa = 64, respectively,

T2s=T1b(k1)/k=288×64(1.41)/1.4=945 KT_{2s}\,=\,T_{1}\mathbf{b}^{(k-1)/k}\,=\,288\times64^{(1.4-1)/1.4}\,=\,945\ \mathrm{K}

 

T2=T1+(T2sT1)/hic=288+(945288)/0.85=1061KT_{2}\,=\,T_{1}+(T_{2s}-T_{1})/\mathbf{h}_{ic}\,=\,288+(945-288)/0.85=\,1061\,\mathrm{K}

3. With the gas turbine inlet temperature T3T_{3} = 1050°C + 273 = 1323 K, the fuel–air ratio is given by

f=cp(T3T2)/LHV=1.05×(13231061)/49,000=0.00561kg/kg{f}\,=\,c_{p}(T_{3}-T_{2})/\mathrm{LHV}\mathrm{ }=\,1.05\times(1323-1061)/49,000=\,0.0056\mathrm{1\,kg/kg}

4. Mass of air required

ma=Qs/cpΔT=1×106kWh×3600  s/h/[1.05kJ/kg  k×(1323288)K]m_{a}\,=\,Q_{s}/c_{p}\Delta T\,=\,1\times1 0^{6}\,\mathrm{kW}\,\mathrm{h}\times3600\,\,\mathrm{s/h}\,/[1.05\,\mathrm{kJ} /\mathrm{kg}\,\,\mathrm{k}\times(1323-288)\,\mathrm{K}]

= 3,312,629 kg

5. Total fuel requirements

mf  =  f  ma  =  0.00561×3,312,629=18,584  kgm_{f}\;=\;f\;m_{a}\;=\;0.00561\times3,312,629=18,584\;{\mathrm{kg}}

6. Fuel mass flow rate per hour of generation

mfm_{f} = 18,584 kg/8 h = 2323 kg/h

7. Air density at p2p_{2} = 6.4 MPa and T2T_{2} = 1061 K

r2=p2/RT2=6.4×106 Pa /[287J/(kg K)×1061 K]=21.02 kg/m3{\bf r}_{2}\,=\,p_{2}/\mathrm{RT}_{2}\,=\,6.4\times10^{6}\mathrm{~Pa~}/\left[287 \,\mathrm{J}/(\mathrm{kg~}\mathrm{K})\times1061\mathrm{~K}\right]\,=\,21.02\mathrm{~kg/m^{3}}\,

8. Cavern volume required

Vc=ma/r2=3,312,629  kg/21.02  kg/m3=157,594  m3V_{c}\,=\,m_{a}/{\bf r}_{2}\,=\,3,312,629\;\mathrm{kg/21.}02\;\mathrm{kg/m^{3}}\,=\,157,594\;\mathrm{m^{3}}

9. Average air flow to the cavern during 5 h of compression

Va,av=157,594 m3/5 h=31,518.8 m3/h=8.755 m3/sV_{a,a v}=157,594\mathrm{~m^{3}/5~h=31},518.8\mathrm{~m^{3}/h}=8.755\mathrm{~m^{3}/s}

It is more reasonable to employ a two-stage intercooled compression and two-stage reheat expansion.
Example 11.3 presents the performance calculation of a CAES system for a utility-scale power plant.

Related Answered Questions