Question 8.9: Calculate the input-referred noise, F, and SNRs for the circ......

Calculate the input-referred noise, F, and SNRs for the circuit seen in Fig. 8.21.

8.21
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let’s begin by adding the noise voltage spectral density to the circuit, Fig. 8.22a. The output noise PSD is

Vonoise2(f)=4kTRs[RinRin+Rs]2+4kTRin[RsRin+Rs]2V_{o n o i s e}^{2}(f)=4k T R_{s}\biggl[\frac{R_{i n}}{R_{i n}+R_{s}}\biggr]^{2}+4k T R_{i n}\biggl[\frac{R_{s}}{R_{i n}+R_{s}}\biggr]^{2}

To determine Vonoise,RMSV_{o n o i s e,R M S}, we integrate this PSD over the bandwidth of interest B or

Vonoise,RMS2=fLfHVonoise2(f)df=4kTBRs[RinRin+Rs]2+4kTBRin[RsRin+Rs]2V_{o n o i s e,R M S}^{2}=\int_{f_{L}}^{f_{H}}V_{o n o i s e}^{2}(f)\cdot d f=4k T B R_{s}\biggl[{\frac{R_{i n}}{R_{i n}+R_{s}}}\biggr]^{2}+4k T B R_{i n}\biggl[{\frac{R_{s}}{R_{i n}+R_{s}}}\biggr]^{2}

 

Noting our gain A (= Vout/VinV_{_{o u t}}/V_{i n} not Vout/VsV_{_{o u t}}/V_{s}) is one, we can use the model shown in Fig. 8.22b. To determine the input-referred noise sources, we can use Eq. (8.32) and the results in Ex. 8.7. To determine Vinoise,RMS\textstyle V_{i n o i s e,R M S}, we short the input to ground (Rs=0R_{s}=0 in Fig. 8.21 and the equation above), Fig. 8.22c, and equate the circuit output to Vonoise,RMS\textstyle V_{o n o i s e,R M S}. This gives

Vonoise,RMS2=4kTRsB(ARinRs+Rin)2+Iinoise,RMS2(ARsRinRs+Rin)2+Vinoise,RMS2(ARinRs+Rin)2V_{o n o i s e,R M S}^{2}=4k T R_{s}B\cdot\left(\frac{A R_{i n}}{R_{s}+R_{i n}}\right)^{2}+I_{i n o i s e,R M S}^{2}\cdot\left(\frac{A R_{s}R_{i n}}{R_{s}+R_{i n}}\right)^{2}+V_{i n o i s e,R M S}^{2}\cdot\left(\frac{A R_{i n}}{R_{s}+R_{i n}}\right)^{2}  (8.32)

Vonoise,RMS,Rs=0=Vinoise,RMS=0V_{o n o i s e,R M S,Rs=0}=V_{i n o i s e,R M S}=0

 

To determine Iinoise,RMS\textstyle I_{i n o i s e,R M S}, we open the input (Rs=R_{s}=∞ ), Fig. 8.22d, and equate the Rs circuit’s output to Vonoise,RMS\textstyle V_{o n o i s e,R M S} (from the equation above). This gives

Rin2Iinoise,RMS2=Vonoise,RMS,Rs=2=4kTBRinIinoise,RMS=4kTBRinR_{i n}^{2}\cdot I_{i n o i s e,R M S}^{2}=V_{o n o i s e,R M S,R s=\infin }^{2}=4k T B R_{i n}\to I_{i n o i s e,R M S}=\sqrt{\frac{4k T B}{R_{i n}}}

 

The input SNR is given in Eq. (8.29). The output SNR, Fig. 8.22e, is

SNRin=Vs,RMS2[RinRin+Rs]24kTRsB[RinRin+Rs]2=Vs,RMS24kTRsBS N R_{i n}=\frac{V_{s,R M S}^{2}\cdot\left[\frac{R_{i n}}{R_{i n}+R_{s}}\right]^{2}}{4k T R_{s}B\cdot\left[\frac{R_{i n}}{R_{i n}+R_{s}}\right]^{2}}=\frac{V_{s,R M S}^{2}}{4k T R_{s}B}       (8.29)

SNRout=Vs,RMS2[RinRs+Rin]2Vonoise,RMS2=Vs,RMS24kTBRs(1+Rs/Rin)\mathrm{SN}R_{o u t}={\frac{V_{s,R M S}^{2}\cdot\left[{\frac{R_{i n}}{R_{s^{+}R_{i n}}}}\right]^{2}}{V_{o n o i s e,R M S}^{2}}}={\frac{V_{s,R M S}^{2}}{4k T B\cdot R_{s}(1+R_{s}/R_{i n})}}        (8.40)

The noise factor is then

F=1+RsRinF=1+\frac{R_{s}}{R_{i n}}                    (8.41)

To minimize the NF, we can decrease RsR_{s} or increase RinR_{in}. Decreasing RsR_{s} causes SNRinSNR_{in} and SNRoutSNR_{out} to increase, as seen in Eqs. (8.29) and (8.40). At the same time, increasing RinR_{in} causes SNRoutSNR_{out} to move towards SNRinSNR_{in}, Eq. (8.40), resulting in F moving towards 1.

8.22

Related Answered Questions

Question: 8.11

Verified Answer:

Again, as determined in Ex. 8.5, the total output ...
Question: 8.6

Verified Answer:

The only element in this circuit that generates no...
Question: 8.3

Verified Answer:

Measured output noise usually includes the thermal...
Question: 8.9

Verified Answer:

Let's begin by adding the noise voltage spectral d...
Question: 8.18

Verified Answer:

The schematic used for simulations is seen in Fig....
Question: 8.17

Verified Answer:

This amplifier is a transimpedance amplifier, that...