Question 22.5: Determine the output voltage for the diff-amp seen in Fig. 2......

Determine the output voltage for the diff-amp seen in Fig. 22.12. Verify your hand calculations using SPICE.

22.12
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The tail current of the diff-amp conducts 20 μA so M1 and M2, when the inputs are equal, each conduct 10 μA. Using the parameters from Table 9.2 and Eq. (22.22), the gain of the diff-amp is

A_d=\frac{\nu_{out}}{\nu_{di}}=\frac{\nu_{out}}{\nu_{i1}-\nu_{i2}}=g_m\cdot (r_{o2}||r_{o4})           (22.22)

A_{d}=g_{m}\cdot(r_{o n}||r_{o p})=(150\times10^{-6})\cdot\left\lgroup\frac{167\cdot333}{167+333}\times10^{3}\right\rgroup =16.7~V/V

This means that the 1 mV AC input will appear as a 16.7 mV AC output. The DC level on the output is VDD – V_{SG}=650\ mV. The output voltage is then

\nu_{o u t}(t)=0.65+(16.7\ m V)\cdot\sin\left(2\pi10M H z\cdot t\right)

The simulation results are seen in Fig. 22.13.

Table 9.2 Typical parameters for analog design using the short-channel CMOS process discussed in this book. These parameters are valid only for the device sizes and currents listed.

Short-channel MOSFET parameters for general analog design

VDD = 1 V and a scale factor of 50 nm {scale = 50e-9)

Parameter NMOS PMOS Comments
Bias current, I_D 10 \mu A 10 \mu A Approximate, see Fig. 9.31
W/L 50/2 100/2 Selected based on I_D\ \text{and}\ V_{o\nu}
Actual W/L 2.5\mu m/100nm 5\mu m/100nm L_{min}\ \text{is}\ 50 nm
V_{DS,sat}\ \text{and}\ V_{SD,sat} 50 mV 50 mV However, see Fig. 9.32  and

the associated discussion

V_{o\nu n}\ \text{and}\ V_{o\nu p} 70 mV 70 mV
V_{GS}\ \text{and}\ V_{SG} 350 mV 350 mV No body effect
V_{THN}\ \text{and}\ V_{THP} 280 mV 280 mV Typical
\partial V_{THN,P}/\partial T – 0.6 mV/C° – 0.6 mV/C° Change with temperature
\nu_{satn}\ \text{and}\ \nu_{satp} 110\times 10^3\ m/s 90\times 10^3\ m/s From the BSIM4 model
t_{ox} 14\ \mathring{A} 14\ \mathring{A} Tunnel gate current, 5\ A/cm^2
{C}_{o x}^{\prime}=\varepsilon _{ox}/t_{ox} 25\ fF/\mu m^2 25\ fF/\mu m^2 {C}_{o x}={C}_{o x}^{\prime}WL\cdot (scale)^2
C_{oxn}\ \text{and}\ C_{oxp} 6.25fF 12.5fF PMOS is two times wider
C_{gsn}\ \text{and}\ C_{sgp} 4.17fF 8.34fF C_{gs}=\frac{2}{3}C_{ox}
C_{gdn}\ \text{and}\ C_{dgp} 1.56fF 3.7fF C_{gd}=CGDO\cdot W\cdot scale
g_{mn}\ \text{and}\ g_{mp} 150\ \mu A/V 150\ \mu A/V At\ I_D=10\ \mu A
r_{on}\ \text{and}\ r_{op} 167\ k\Omega 333\ k\Omega Approximate at I_D=10\ \mu A
g_{mn}r_{on}\ \text{and}\ g_{mp}r_{op} 25 V/V 50 V/V !!Open circuit gain!!
\lambda _n\ \text{and}\ \lambda _p 0.6\ V^{-1} 0.3\ V^{-1} L = 2
f_{Tn}\ \text{and}\ f_{Tp} 6000 MHz 3000 MHz Approximate at L = 2
22.13
9.31
9.32

Related Answered Questions

Question: 22.7

Verified Answer:

As mentioned above, the (low-frequency) calculated...
Question: 22.8

Verified Answer:

The simulation results are seen in Fig. 22.23. Not...