Design the Clapp oscillator in Figure 3.30a to oscillate at 10 MHz.
The BFS17P BJT was selected for this design. This RF transistor lists a maximum f_{T} value of 2.5 GHz. At a typical Q point of V_{C E}=5V\mathrm{and}\;I_{C}=2\;\mathrm{mA}, the value of f_{T} is 1.5 GHz.
The Q point is obtained with V_{\mathrm{CC}}=10\mathrm{V},\;R_{E}=2.5\;\mathrm{k\Omega},\;R_{1}=4.3\;\mathrm{k\Omega} and R_{2}=5.7\ k\Omega. The value of g_{m}\, at I_{C} = 2 mA is 80 mS.
Let L = 25 μH with {Q}_U = 80. Then, X_{L}=1,571\Omega at 10 MHz and
R_{s}=\frac{\omega L}{Q_{U}}=\frac{2\,\pi \times 10^{7}(25 \times 10^{-6})}{80}=19.6\Omega
From (3.67), with C_{1}=C_{2}, we obtain
\frac{g_{m}}{\omega_{o}^{2}\,C_{1}\,C_{2}\,R_{s}}\gt 1 (3.67)
C_{1}^{2}\lt {\frac{g_{m}}{\omega_{o}^{2}R_{s}}}={\frac{0.08}{(2\pi \times 10^{7})^{2}19.6}}=1.04\times10^{-18}
or C_{1}\ll1 nF, which is satisfied with C_{1}=C_{2}=100 = 100 pF (or X_{C_{1}}=-159\Omega).
The value of {{C}}_{3} follows from
X_{C_{3}}=-X_{L}-X_{C_{1}}-X_{C_{7}}=-1,571+159+159=-1,253\Omega
or {C}_{3}=12.7{\mathrm{~pF}}. The total capacitance across L is \mathbf{C}_{T} = 10 pF.
The simulation of the oscillator is shown in Figure 3.31. The fundamental frequency of oscillation is 10.01 MHz.