A cylindrical-rotor machine is supplying a load of 0.8 PF lagging at an infinite bus. The ratio of the excitation voltage to the infinite-bus voltage is found to be 1.25. Compute the power angle δ.
For a power factor of 0.8, we have
{\frac{Q}{P}}=\tan\phi=0.75Using the active and reactive power formulas, Eqs. (7.40) and (7.42), we have
P_{1}=P_{2}={\frac{E V}{X}}\sin\delta (7.40)
Q_{2}={\frac{E V\cos\delta-V^{2}}{X}} (7.42)
{\frac{Q}{P}}={\frac{\cos\delta-{\frac{V}{E}}}{\sin\delta}} \\ 0.75={\frac{\cos\delta-0.8}{\sin\delta}}Cross multiplying, we have
0.8+0.75\sin\delta=\cos\deltaUsing
\cos^{2}\delta=1-\sin^{2}\!\deltaWe get
[(0.75)^{2}+1]\sin^{2}\delta+2(0.8)(0.75)\sin\delta+[(0.8)^{2}-1]=0Consequently,
\sin\delta=0.23 \\ \delta=13.344{\mathrm{~deg}}