Question 24.14: In Fig. 24.19, let R1 = 2 Ω, R2 = 4 Ω, E1 = 6 V, E2 = 3 V, a......

In Fig. 24.19, let R_{1} =   2  Ω,  R_{2}  =  4  Ω,  \mathcal{E}_{1} =   6  V,  \mathcal{E}_{2} = 3 V, and C = 2 µF. Find the steady currents I_{1},  I_{2},  and  I_{3} and the charge Q.

fig 24.19
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Applying Kirchhoff’s junction rule at point b, we get:
(1) Junction b:             I_{1}=I_{2}+I_{3}

The application of the loop rule to the loops abgha and bcfgb gives:
Loop abgha:         -\,I_{1}\,R_{1}-{\mathcal{E}}_{2}-I_{2}\,R_{2}-I_{1}\,R_{1}+{\mathcal{E}}_{1}=0

-2I_{1}-3-4I_{2}-2I_{1}+6=0

(2)                   -\,4\,I_{1}-4\,I_{2}+3=0

Loop bcfgb:        -\,I_{3}\,R_{1}-\mathcal{E}_{1}-I_{3}\,R_{1}+I_{2}\,R_{2}+\mathcal{E}_{2}=0

-2\,{ I}_{3}-6-2\,{ I}_{3}+4\,{I}_{2}+3=0

(3)                 -4I_{3}+4I_{2}-3=0

Substituting Eqs. (1) into (3) gives:
(4)      -4I_{1}+8I_{2}-3=0

Subtracting Eqs. (4) from (2) gives:

(-4\,I_{1}-4\,I_{2}+3)-(-4\,I_{1}+8\,I_{2}-3)=0\quad\Rightarrow\quad I_{2}=0.5\,\mathrm{A}

Using this value of I_{2} in Eq. (4) gives I_{1} a value of:

-4\ I_{1}+8(0.5)-3=0\quad\Rightarrow\quad I_{1}=0.25\;\mathrm{A}

Finally, from Eq. (1) we have:

I_{3}=I_{1}-I_{2}=0.5-0.25\ \mathrm{A}=0.25\ \mathrm{A}

Applying Kirchhoff’s loop rule to the loop cdefc gives:
Loop cdefc:         Q/C-{\mathcal{E}}_{2}+{\mathcal{E}}_{1}=0\quad\Rightarrow\quad Q=({\mathcal{E}}_{2}-{\mathcal{E}}_{1})C=-6\,\mu C

Related Answered Questions

Question: 24.13

Verified Answer:

We cannot simplify the circuit by the rule of addi...
Question: 24.12

Verified Answer:

Applying Kirchhoff’s loop rule to the loop abb′a′a...
Question: 24.10

Verified Answer:

The equivalent resistance of the parallel combinat...
Question: 24.9

Verified Answer:

The equivalent resistance of the series combinatio...