Question 4.2: At time t0, the state vector of an earth satellite is r0 = 1......

At time t_{0} , the state vector of an earth satellite is

\mathrm{r}_{0}=1600\hat{i}+5310\hat{j}+3800\hat{\mathrm{k}}\left(\mathrm{km}\right)            (a)

\mathrm{v}_{0}=-7.350\mathrm{\hat{i}}+0.4600\mathrm{\hat{j}}+2.470\mathrm{\hat{k}}\left(\mathrm{km/s}\right)             (b)

Determine the position and velocity 3200 s later and plot the orbit in three dimensions .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We will use the universal variable formulation and Algorithm 3.4, which was illustrated in detail in Example 3.7. Therefore, only the results of each step are presented here.

Step 1:

(α here is not to be confused with the right ascension.)

α = 1.4613 × 10^{-4}  km^{-1}   . Since this is positive, the orbit is an ellipse.

Step 2:

\chi=294.42{\mathrm{~km}}^\frac{1}{2}

Step 3:

f=-0.94843~{\mathrm{and}}~g=-354.89~s^{-1}

Step 4:

r = 1090.9 \hat{i} – 5199.4 \hat{j} – 4480.6 \hat{k}\ (km) ⇒ r = 6949.8 km

Step 5:

\dot{f}=0.00045324\,\mathrm{s}^{-1},\,\,\,\dot{\mathrm{g}}=-0.88479

Step 6:

v = 7.2284 \hat{i} + 1.9997 \hat{j} – 0.46311\ \hat{k} (km/s)

To plot the elliptical orbit, we observe that one complete revolution means a change in the eccentric anomaly E of 2π radians. According to Eqn (3.57), the corresponding change in the universal anomaly is

\chi = \begin{cases} \frac{h}{\sqrt{μ}} \tan \frac{θ}{2}     parabola \\ {\sqrt{a}}E\qquad{\mathrm{elilipse}}                 (t_{0}=0,\mathrm{~at~periapse})                    (3.57)\\ \sqrt{-a}{ F}~~~~\mathrm{hyperbola} \end{cases}

\chi={\sqrt{a}}E={\sqrt{\frac{1}{\alpha}}}E={\sqrt{\frac{1}{0.00014613}}}.2\pi=519.77{\mathrm{~km}}^{\frac{1}{2}}

Letting \chi   vary from 0 to 519.77 in small increments, we employ the Lagrange coefficient formulation (Eqn (3.67) plus (3.69a) and (3.69b)) to compute

\mathbf{r}=f\mathbf{r}_{0}+g\mathbf{v}_{0}         (3.67)

f=1-{\frac{\chi^{2}}{r_{0}}}C(\alpha\chi^{2})         (3.69a)

g=\Delta t-{\frac{1}{\sqrt{\mu}}}\chi^{3}S(\alpha\chi^{2})              (3.69b)

\mathbf{r}=\left[1-{\frac{\chi^{2}}{r_{0}}}C{\Big(}\alpha\,\chi^{2}{\Big)}\right]\mathbf{r}_{0}+\left[\Delta t-{\frac{1}{\sqrt{\mu}}}\chi^{3}S{\Big(}\alpha\,\chi^{2}{\Big)}\right]\mathbf{v}_{0}

where Δt for a given value of \chi is given by Eqn (3.49). Using a computer to plot the points obtained in this fashion yields Figure 4.6, which also shows the state vectors at t_{0}   and   t_{0}  +  3200  s .

\sqrt{\mu}\Delta t={\frac{r_{0}v_{ r_{0}}}{\sqrt{\mu}}}\chi^{2}C{\bigl(}\alpha\chi^{2}{\bigr)}+(1-\alpha r_{0})\chi^{3}S{\bigl(}\alpha\chi^{2}{\bigr)}+r_{0}\chi        (3.49)

تعليق توضيحي 2023-06-02 131228

Related Answered Questions