A spacecraft is in a 280 km by 400 km orbit with an inclination of 51.43°. Find the rates of node regression and perigee advance.
The perigee and apogee radii are
rp=6378+280=6658kmra=6378+400=6778km
Therefore, the eccentricity and semimajor axis are
e=ra+rpra−rp=0.008931
a=21(ra+rp)=6718km
From Eqn (4.52), we obtain the rate of node line regression.
Ω˙=−[23(1−e2)2a27μJ2R2]cosi ( 4.52)
Ω˙=−[23(1−0.00893122)2×67187/2398.600×0.0010826×63782]cos51.43∘=−1.0465×10−6rad/s
or
Ω˙=5.181° per day to the west
From Eqn (4.54),
ω˙=Ω˙cosi(5/2)sin2i−2 (4.54)
ω˙=−1.0465×10−6.(25sin251.43∘−2)=+7.9193×10−7 rad/s
or
ω˙= 3.920° per day in the flight direction