A satellite is to be launched into a sun-synchronous circular orbit with period of 100 min. Determine the required altitude and inclination of its orbit.
We find the altitude z from the period relation for a circular orbit, Eqn (2.64):
T_{\mathrm{circular}}={\frac{2\pi}{\sqrt{\mu}}}r^{\frac{3}{2}} (2.64)
T={\frac{2\pi}{\sqrt{\mu}}}(R_{E}+z)^{\frac{3}{2}}\Rightarrow100\times60={\frac{2\pi}{\sqrt{398,600}}}(6378+z)^{\frac{3}{2}}\Rightarrow z = 758.63 km
For a sun-synchronous orbit, the ascending node must advance at the rate
{\dot{\Omega}}={\frac{2\pi\,\operatorname{rad}}{365.26\times24\times3600\,{\mathrm{s}}}}=1.991\times10^{-7}\,\mathrm{rad/s}
Substituting this and the altitude into Eqn (4.47), we obtain,
[\mathbf{Q}]_{X\bar{x}}=[\mathbf{R}_{3}(\omega)][\mathbf{R}_{1}(i)][\mathbf{R}_{3}(\Omega)] (4.47)
1.991\times10^{-7}=-\left[{\frac{3}{2}}{\frac{\sqrt{398.600}\times0.00108263\times6378^{2}}{(1-0^{2})^{2}(6378+758.63)^\frac{7}{2}}}\right]\cos i\Rightarrow \cos i = – 0.14658
Thus, the inclination of the orbit is
i = \cos^{-1} ( – 0.14658) = 98.43°
This illustrates the fact that sun-synchronous orbits are very nearly polar orbits (i = 90°).