Question 3.10: The rheological properties of a particular suspension may be......

The rheological properties of a particular suspension may be approximated reasonably well by either a powerlaw or a Bingham-plastic model over the shear rate range of 10 to 50 s^{-1}. If the consistency coefficient k is 10 N s^{n}/m^{-2} and the flow behaviour index n is 0.2 in the power law model, what will be the approximate values of the yield stress and of the plastic viscosity in the Bingham-plastic model?

What will be the pressure drop, when the suspension is flowing under laminar conditions in a pipe 200 m long and 40 mm diameter, when the centre line velocity is 1 m/s, according to the power-law model? Calculate the centre-line velocity for this pressure drop for the Bingham-plastic model.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Using the power-law model (equation 3.121):

|R_{y}|=k\left(\left|{\frac{\mathrm{d}u_{x}}{\mathrm{d}y}}\right|\right)^{n}=10\left(\left|{\frac{\mathrm{d}u_{x}}{\mathrm{d}y}}\right|\right)^{0.2}

When: \left|\frac{\mathrm{d}u_{x}}{\mathrm{d}y}\right|=10\mathrm{~s}^{-1}:\vert R_{y}\vert=10\times10^{0.2}=15.85\mathrm{~N/m^{2}~}

\left|\frac{\mathrm{d}u_{x}}{\mathrm{d}y}\right|=50\mathrm{~s}^{-1}:\vert R_{y}\vert=10\times50^{0.2}=21.87\mathrm{~N/m^{2}~}

Using the Bingham-plastic model (equation 3.125):

|R_{y}|-R_{Y}=\mu_{p}\left|\frac{\mathrm{d}u_{x}}{\mathrm{d}y}\right|\quad(|R_{y}|\geqslant R_{Y})           (3.125)

|R_{y}|=R_{Y}+\mu_{p}\left|{\frac{\mathrm{d}u_{x}}{\mathrm{d}y}}\right|

When: \left|\frac{du_{x}}{dy} \right|=10\ s^{-1}:\ \ 15.85=R_{Y}+10\mu _{p}

\left|\frac{du_{x}}{dy} \right|=50\ s^{-1}:\ \ \underline{21.87=R_{Y}+50\mu _{p}}.

Subtracting:       6.02 = 40\mu _{p}.

Thus:                  \mu _{p} = 0.150 N s/m²

and:                        R_{Y} = 14.35 N/m²

Thus, the Bingham-plastic equation is:

|R_{y}|=14.35+0.150\left|{\frac{\mathrm{d}u_{x}}{\mathrm{d}y}}\right|

For the power-law fluid:

Equation 3.131 gives: u_{C L}=\left(\frac{-\Delta P}{2k l}\right)^{1/n}\frac{n}{n+1}r^{(n+1)/n}                     (3.131)

Rearranging: -\Delta P=2k l u_{C L}^{n}\left({\frac{n+1}{n}}\right)^{n}r^{-(n+1)}.

The numerical values in SI units are:

u_{C L}=1\ \mathrm{m/s},\ \ l=200\ \mathrm{m},\ \ r=0.02\ \mathrm{m},\ \ k=10\ \mathrm{Ns}^{n}\mathrm{m}^{-2},\ \ n=0.2

and:  -ΔP = \underline{\underline{626,000\ N/m^{2}}}

For a Bingham-plastic fluid:

The centre line velocity is given by equation 3.145:

u_{p}=\frac{-\Delta P r^{2}}{8\mu_{p}l}(2-4X+2X^{2})

where:           X={\frac{l}{r}}{\frac{2R_{Y}}{(-\Delta P)}}

=\frac{200}{0.02}\times\frac{2\times14.35}{626,000}=0.458

\therefore          2 – 4X + 2X² = 0.589

u_{p}=\frac{626,000\times(0.02)^{2}}{8\times0.150\times200}\times0.589

= \underline{\underline{0.61\ m/s}}

Related Answered Questions