Let f and g be real functions defined by f(x)=\sqrt{x-1} and g(x)=\sqrt{x+1} .
Find (i)(f+g)(x) \qquad (ii) (f-g)(x)\qquad (iii) (f g)(x)\qquad (iv) \left(\frac{f}{g}\right)(x) .
Clearly, f(x)=\sqrt{x-1} is defined for all real values of x for which x-1 \geq 0 , i.e., x \geq 1 . So, \operatorname{dom}(f)=[1, \infty) .
Also, g(x)=\sqrt{x+1} is defined for all real values of x for which x+1 \geq 0 , i.e., x \geq-1 . So, \operatorname{dom}(g)=[-1, \infty) .
\therefore \quad \operatorname{dom}(f) \cap \operatorname{dom}(g)=\{1, \infty) \cap[-1, \infty)=[1, \infty) .
(i) (f+g):[1, \infty) \rightarrow R is given by
(f+g)(x)=f(x)+g(x)=(\sqrt{x-1}+\sqrt{x+1}) .(ii) (f-g):[1, \infty) \rightarrow R is given by
(f-g)(x)=f(x)-g(x)=(\sqrt{x-1}-\sqrt{x+1}) .(iii) (f g):[1, \infty) \rightarrow R is given by
(f g)(x)=f(x) \cdot g(x)=\sqrt{x-1} \times \sqrt{x+1}=\sqrt{x^{2}-1} .