A Faraday MHD generator (see Figure 13.9) is operating under the following conditions:
• Electrical resistivity of the ionized gas is ρ = 0.07 Ω m
• Magnetic field strength is B = 3.7 T
• Plasma velocity is u = 1000 m/s
• Electrode area is A = 1.4 m²
• Interelectrode gap in the channel is s = 0.9 m
Calculate the maximum power output and energy conversion efficiency of the generator
1. Open-circuit voltage
V_{\mathrm{oc}}=u\;B\;s=1000\;\mathrm{m/s}\times3.7\,T\times0.9\;\mathrm{m}=3330\,\mathrm{V}2. Short-circuit current
I_{\mathrm{sc}}\,=\,A\,u\,B/{\bf r}\,=\,1.4\,{ m}^{2}\times1000\,{ m}/{\bf s}\times3.7\,\mathrm{T}/0.07\,{\bf \Omega}\,{ m} )=74,000\,{ A}3. Current corresponding to the maximum power
I_{\mathrm{m}}={u B A/(2{\bf r})}={ 1000~\mathrm{m/s}\times3.7\,T\times1.4~\mathrm{m^{2}}/(2\times0.07~\Omega~\mathrm{m})}=37,000~\mathrm{A}4. Voltage corresponding to the maximum power
V_{\mathrm{m}}={ u}\,B s-I_{\mathrm{m}}{\bf r}\,s/{ A}=1000\,{ m}/{ s}\times3.7\,{{T}}\times37,000\,{ A}\times0.07\,{\Omega}\,{ m}\,\times \,0.9\,{\mathrm{m/1.4}}\,{\mathrm{m^{2}}}\,=\,1665\,{\mathrm{V}}
5. Maximum power output
P_{\mathrm{m}}=V_{\mathrm{m}}I_{\mathrm{m}}=1665\times37000=61,600,000\,\mathrm{W}=61.6~\mathrm{MW}6. MHD generator conversion efficiency
{\bf h}_{\mathrm{MHD}}\,=\,V_{\mathrm{m}}/(u B)\,=\,1 665\,V(\,1000\,\mathrm{m}/{ \mathrm{s}}\times3.7\,\mathrm{T})\,=\,0.45