Question 9.5: A balanced three-phase wye-connected generator delivers powe......

A balanced three-phase wye-connected generator delivers power to a balanced three-phase delta-connected load through a line as shown in Fig. 9.21. Line impedance, per phase load impedance and generator voltage are ZL=215oΩ,Z_{L}=2|\underline{{{15}}}^{o}\Omega,  ZΔ=1230ΩZ_{Δ}=12|\underline30^{\circ}\Omega and 230 V rms, respectively. For ABC phase sequence, calculate the
line currents and phase currents.

9.21
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Converting delta-connected load to a wye-connected load yields,

Zy=ZΔ3=12303=430ΩZ_{y}={\frac{Z_{\Delta}}{3}}={\frac{12|\underline{30^{\circ}}}{3}}=4|\underline{30^{\circ}}\Omega     (9.76)

The line currents can be calculated as,

IAa=νanZy+ZL=2300215+430=38.6325.01AI_{\mathrm{Aa}}={\frac{\nu_{\mathrm{an}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{0^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{-25.01^{\circ}}\mathrm{A}     (9.77)

IBb=νbnZy+ZL=230120215+430=38.63145.01AI_{\mathrm{Bb}}={\frac{\nu_{\mathrm{bn}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{-120^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{-145.01^{\circ}}\mathrm{A}     (9.78)

ICc=νcnZy+ZL=230120215+430=38.6394.99AI_{\mathrm{Cc}}={\frac{\nu_{\mathrm{cn}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{120^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{94.99^{\circ}}\mathrm{A}    (9.79)

The line voltage is calculated as,

VAB=3νan30=3×23030=398.3730VV_{\mathrm{AB}}=\sqrt{3}\nu_{\mathrm{an}}\big\vert\underline{{{\mathrm{30}}}}^{\circ}=\sqrt{3}\times230|\underline{30^{\circ}}=398.37|\underline{30^{\circ}}\mathrm{{V}}    (9.80)

Applying KVL between lines A and B of the circuit in Fig. 9.21 yields,

Vab=VABIAaZL+IBbZLV_{\mathrm{ab}}=V_{\mathrm{AB}}-I_{\mathrm{Aa}}Z_{L}+I_{\mathrm{Bb}}Z_{L}    (9.81)

Vab=398.3730+215(38.63145.0138.6325.01)=267.6035VV_{\mathrm{ab}}=398.37|\underline{30^{\circ}}+2|\underline{15^{\circ}}(38.63|\underline{-145.01^{\circ}}-38.63|\underline{-25.01^{\circ}})=267.60|\underline{35}^{\circ}V    (9.82)

The phase current is calculated as,

Iab=VabZΔ=267.60351230=22.35AI_{\mathrm{ab}}=\frac{V_{\mathrm{ab}}}{Z_{Δ}}=\frac{267.60|\underline{35^{\circ}}}{12|\underline{30^{\circ}}}=22.3|\underline{5^{\circ}}\,{\mathrm{A}}    (9.83)

Other phase currents can be written as,

Ibc=Iab120=22.35120=22.33155AI_{bc}=I_{ab}|\underline{-120}^{\circ}=22.3|\underline{5^{\circ}-120^{\circ}}=22.33|\underline{-155}^{\circ}A    (9.84)

Ica=Iab120=22.35+120=22.33125AI_{ca}=I_{ab}|\underline{120}^{\circ}=22.3|\underline{5^{\circ}+120^{\circ}}=22.33|\underline{125}^{\circ}A    (9.85)

Related Answered Questions

Question: 9.1

Verified Answer:

The phase voltage for line a is, V_{\mathrm...