Converting delta-connected load to a wye-connected load yields,
Z y = Z Δ 3 = 12 ∣ 3 0 ∘ ‾ 3 = 4 ∣ 3 0 ∘ ‾ Ω Z_{y}={\frac{Z_{\Delta}}{3}}={\frac{12|\underline{30^{\circ}}}{3}}=4|\underline{30^{\circ}}\Omega Z y = 3 Z Δ = 3 1 2 ∣ 3 0 ∘ = 4 ∣ 3 0 ∘ Ω (9.76)
The line currents can be calculated as,
I A a = ν a n Z y + Z L = 230 ∣ 0 ∘ ‾ 2 ∣ 1 5 ∘ ‾ + 4 ∣ 3 0 ∘ ‾ = 38.63 ∣ − 25.0 1 ∘ ‾ A I_{\mathrm{Aa}}={\frac{\nu_{\mathrm{an}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{0^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{-25.01^{\circ}}\mathrm{A} I A a = Z y + Z L ν a n = 2 ∣ 1 5 ∘ + 4 ∣ 3 0 ∘ 2 3 0 ∣ 0 ∘ = 3 8 . 6 3 ∣ − 2 5 . 0 1 ∘ A (9.77)
I B b = ν b n Z y + Z L = 230 ∣ − 12 0 ∘ ‾ 2 ∣ 1 5 ∘ ‾ + 4 ∣ 3 0 ∘ ‾ = 38.63 ∣ − 145.0 1 ∘ ‾ A I_{\mathrm{Bb}}={\frac{\nu_{\mathrm{bn}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{-120^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{-145.01^{\circ}}\mathrm{A} I B b = Z y + Z L ν b n = 2 ∣ 1 5 ∘ + 4 ∣ 3 0 ∘ 2 3 0 ∣ − 1 2 0 ∘ = 3 8 . 6 3 ∣ − 1 4 5 . 0 1 ∘ A (9.78)
I C c = ν c n Z y + Z L = 230 ∣ 12 0 ∘ ‾ 2 ∣ 1 5 ∘ ‾ + 4 ∣ 3 0 ∘ ‾ = 38.63 ∣ 94.9 9 ∘ ‾ A I_{\mathrm{Cc}}={\frac{\nu_{\mathrm{cn}}}{Z_{\mathrm{y}}+Z_{L}}}={\frac{230|\underline{120^{\circ}}}{2|\underline{15^{\circ}}+4{|\underline{30^{\circ}}}}}=38.63|\underline{94.99^{\circ}}\mathrm{A} I C c = Z y + Z L ν c n = 2 ∣ 1 5 ∘ + 4 ∣ 3 0 ∘ 2 3 0 ∣ 1 2 0 ∘ = 3 8 . 6 3 ∣ 9 4 . 9 9 ∘ A (9.79)
The line voltage is calculated as,
V A B = 3 ν a n ∣ 30 ‾ ∘ = 3 × 230 ∣ 3 0 ∘ ‾ = 398.37 ∣ 3 0 ∘ ‾ V V_{\mathrm{AB}}=\sqrt{3}\nu_{\mathrm{an}}\big\vert\underline{{{\mathrm{30}}}}^{\circ}=\sqrt{3}\times230|\underline{30^{\circ}}=398.37|\underline{30^{\circ}}\mathrm{{V}} V A B = 3 ν a n ∣ ∣ ∣ 3 0 ∘ = 3 × 2 3 0 ∣ 3 0 ∘ = 3 9 8 . 3 7 ∣ 3 0 ∘ V (9.80)
Applying KVL between lines A and B of the circuit in Fig. 9.21 yields,
V a b = V A B − I A a Z L + I B b Z L V_{\mathrm{ab}}=V_{\mathrm{AB}}-I_{\mathrm{Aa}}Z_{L}+I_{\mathrm{Bb}}Z_{L} V a b = V A B − I A a Z L + I B b Z L (9.81)
V a b = 398.37 ∣ 3 0 ∘ ‾ + 2 ∣ 1 5 ∘ ‾ ( 38.63 ∣ − 145.0 1 ∘ ‾ − 38.63 ∣ − 25.0 1 ∘ ‾ ) = 267.60 ∣ 35 ‾ ∘ V V_{\mathrm{ab}}=398.37|\underline{30^{\circ}}+2|\underline{15^{\circ}}(38.63|\underline{-145.01^{\circ}}-38.63|\underline{-25.01^{\circ}})=267.60|\underline{35}^{\circ}V V a b = 3 9 8 . 3 7 ∣ 3 0 ∘ + 2 ∣ 1 5 ∘ ( 3 8 . 6 3 ∣ − 1 4 5 . 0 1 ∘ − 3 8 . 6 3 ∣ − 2 5 . 0 1 ∘ ) = 2 6 7 . 6 0 ∣ 3 5 ∘ V (9.82)
The phase current is calculated as,
I a b = V a b Z Δ = 267.60 ∣ 3 5 ∘ ‾ 12 ∣ 3 0 ∘ ‾ = 22.3 ∣ 5 ∘ ‾ A I_{\mathrm{ab}}=\frac{V_{\mathrm{ab}}}{Z_{Δ}}=\frac{267.60|\underline{35^{\circ}}}{12|\underline{30^{\circ}}}=22.3|\underline{5^{\circ}}\,{\mathrm{A}} I a b = Z Δ V a b = 1 2 ∣ 3 0 ∘ 2 6 7 . 6 0 ∣ 3 5 ∘ = 2 2 . 3 ∣ 5 ∘ A (9.83)
Other phase currents can be written as,
I b c = I a b ∣ − 120 ‾ ∘ = 22.3 ∣ 5 ∘ − 12 0 ∘ ‾ = 22.33 ∣ − 155 ‾ ∘ A I_{bc}=I_{ab}|\underline{-120}^{\circ}=22.3|\underline{5^{\circ}-120^{\circ}}=22.33|\underline{-155}^{\circ}A I b c = I a b ∣ − 1 2 0 ∘ = 2 2 . 3 ∣ 5 ∘ − 1 2 0 ∘ = 2 2 . 3 3 ∣ − 1 5 5 ∘ A (9.84)
I c a = I a b ∣ 120 ‾ ∘ = 22.3 ∣ 5 ∘ + 12 0 ∘ ‾ = 22.33 ∣ 125 ‾ ∘ A I_{ca}=I_{ab}|\underline{120}^{\circ}=22.3|\underline{5^{\circ}+120^{\circ}}=22.33|\underline{125}^{\circ}A I c a = I a b ∣ 1 2 0 ∘ = 2 2 . 3 ∣ 5 ∘ + 1 2 0 ∘ = 2 2 . 3 3 ∣ 1 2 5 ∘ A (9.85)