A transfer function is given by H(s)=(s+3)(s+6)72s. Sketch the Bode plots.
Substituting s = jω in the transfer function yields,
H(ω)=(jω+3)(jω+6)72(jω) (10.190)
H(ω)=3(3jω+1)×6(6jω+1)72(jω) (10.191)
H(ω)=(3jω+1)(6jω+1)4(jω) (10.192)
The expressions of the magnitude and phase are,
HdB=20log10(4)+20log10(jω)−20log10∣∣∣∣∣3jω+1∣∣∣∣∣−20log10∣∣∣∣∣6jω+1∣∣∣∣∣ (10.193)
ϕ=90∘−tan−1(3ω)−tan−1(6ω) (10.194)
The magnitude and phase plots are shown in Figs. 10.34 and 10.35, respectively.