Find the standard matrix for the linear operator T : R³ → R³ that first reflects the vector about the yz-plane, then the resulting vector rotates counterclockwise about the z-axis through an angle θ = 90° , and then projects that vector orthogonally onto the xy-plane.
The linear operator T can be expressed as the composition T\;=\;T_{3}\circ T_{2}\circ T_{1}, where T_{1} is the reflection about the yz-plane,T_{2} is the rotation about z-axis, and T_{3} is the orthogonal projection on the xy-plane. The standard matrices for these linear transformations are T_{1}=\left[{\begin{array}{c c c}{-1}&{0}&{0}\\ {0}&{1}&{0}\\ {0}&{0}&{1}\end{array}}\right] , T_{2}=\left[\begin{array}{c c c}{{\cos\theta}}&{{-\sin\theta}}&{{0}}\\ {{\sin\theta}}&{{\cos\theta}}&{{0}}\\ {{0}}&{{0}}&{{1}}\end{array}\right]at θ = 90°, T_{2}={\left[\begin{array}{c c c}{0}&{-1}&{0}\\ {1}&{0}&{0}\\ {0}&{0}&{1}\end{array}\right]}, and T_{3}={\left[\begin{array}{c c c}{1}&{0}&{0}\\ {0}&{1}&{0}\\ {0}&{0}&{0}\end{array}\right]}.
Therefore, T\;=\;T_{3}\circ T_{2}\circ T_{1}
T=\left[{\begin{array}{c c c}{1}&{0}&{0}\\ {0}&{1}&{0}\\ {0}&{0}&{0}\end{array}}\right]\cdot \left[\begin{array}{c c c}{{0}}&{{-1}}&{{0}}\\ {{1}}&{{0}}&{{0}}\\ {{0}}&{{0}}&{{1}}\end{array}\right]\left[\begin{array}{c c c}{{-1}}&{{0}}&{{0}}\\ {{0}}&{{1}}&{{0}}\\ {{0}}&{{0}}&{{1}}\end{array}\right] \\[0.5 em] T=\left[{\begin{array}{c c c}{0}&{-1}&{0}\\ {-1}&{0}&{0}\\ {0}&{0}&{0}\end{array}}\right].