Question 26.1: If v = 3x²yi + 2xyzj − 3x^4y²k, find  ∂v / ∂x , ∂v / ∂y , ∂v......

If  \displaystyle\mathbf{v}=3x^{2}y\mathbf{i}+2x y z\mathbf{j}-3x^{4}y^{2}\mathbf{k},  find   {\frac{\partial{\bf v}}{\partial x}},\,{\frac{\partial{\bf v}}{\partial y}},\,{\frac{\partial{\bf v}}{\partial z}}. Further, find  \frac{\partial^{2}\mathbf{v}}{\partial\mathbf{x^{2}}}  and  {\frac{\partial^{2}\mathbf{v}}{\partial x \partial z}}.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

We find

{\frac{\partial{\bf{v}}}{\partial x}}=6x{y}\mathbf{i}+2y z\mathbf{j}-12x^{3}y^{2}\mathbf{k}

{\frac{\partial{\bf{v}}}{\partial y}}=3x^{2}\mathbf{i}+2x z\mathbf{j}-6x^{4}y\mathbf{k}

{\frac{\partial\mathbf{v}}{\partial z}}=2xy\mathbf{j}

{\frac{\partial^{2}\mathbf{v}}{\partial x^{2}}}=6y\mathbf{i}-36x^{2}y^{2}\mathbf{k}

{\frac{\partial^{2}\mathbf{v}}{\partial x\partial z}}=2y\mathbf{j}

Related Answered Questions

Question: 26.2

Verified Answer:

\phi(x,y,z)=4x^{3}y\sin z so that b...
Question: 26.3

Verified Answer:

(a) If Φ = x³y + xy² + 3y then \frac{\parti...
Question: 26.4

Verified Answer:

Note that in this example F has only two component...
Question: 26.5

Verified Answer:

Partially differentiating the first component of v...
Question: 26.6

Verified Answer:

We have v_{x}=x\sin y\,            ...
Question: 26.7

Verified Answer:

\nabla \times v = \begin{vmatrix} i & j...
Question: 26.8

Verified Answer:

\nabla \times F = \begin{vmatrix} i & j...
Question: 26.9

Verified Answer:

\begin{array}{l}{{\nabla\phi=4x\mathbf{i}-2...
Question: 26.10

Verified Answer:

Given Φ = Φ (x, y, z) we have, by definition, [lat...