A new gas separation process is being developed to separate ethylene (C_{2}H_{4}) from a gas mixture that contains ethylene, small amounts of carbon dioxide (CO_{2}), and carbon monoxide (CO). As part of the process analysis, the gas-phase diffusion coefficient of CO_{2} gas in ethylene and the gas-phase diffusion coefficient of CO in ethylene are needed at 2.0 atm and 77 C (350 K). For the CO_{2}-C_{2}H_{4} binary pair, estimate the gas-phase binary diffusion coefficient by the Hirschfelder and Fuller–Schettler–Giddings correlations. For the CO-C_{2}H_{4} binary pair, extrapolate data found in Appendix J to estimate the binary gas-phase diffusion coefficient.
For the \mathrm{CO_{2}- e t h y l e n e} binary pair, let species A represent CO_{2} with molecular weight of 44 g/mole, and species B represent ethylene with molecular weight of 28 g/mole. Let us first use the Hirschfelder equation. From Appendix K, Table K.2, the Lennard–Jones constants needed for the Hirschfelder equation are \sigma_{A}=3.996\ \mathring{A} , \sigma_{B}=4.232\ \mathring{A} , \epsilon_{A}/\kappa\equiv190\ K,\,\epsilon_{B}/\kappa\equiv205\ \mathrm{K}.
Consequently,
\sigma_{A B}={\frac{\sigma_{A}+\sigma_{B}}{2}}={\frac{3.996\,{\mathring{\mathrm{A}}}+4.232\,{\mathring{\mathrm{A}}}}{2}}=4.114\,{\mathring{\mathrm{A}}}
{\frac{\kappa T}{\epsilon_{A B}}}=\left({\frac{\kappa}{\epsilon_{A}}}{\frac{\kappa}{\epsilon_{A}}}\right)^{1/2}T=\left({\frac{1}{190\,\mathrm{K}}}{\frac{1}{205\,\mathrm{K}}}\right)^{1/2}(350\,\mathrm{K})=1.77
From Appendix K, Table K.1, \Omega_{D}=1.123. Therefore,
D_{A B}=\frac{~0.001858~T^{3/2}\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)^{1/2}}{~P\sigma_{A B}^{2}\Omega_{D}}={\frac{\mathrm{0.001858~}(350)^{3/2}\left({\frac{1}{44}}+{\frac{1}{28}}\right)^{1/2}}{(2.0)(4.114)^{2}(1.123)}}=0.077\,\,\mathrm{cm^{2}/s}
Now, let us compare the Hirschfelder correlation with the Fuller–Schettler–Giddings correlation. From Table 24.3, the atomic diffusion volume for CO_2 is 26.9; the atomic diffusion volume for ethylene (C_{2}H_{4}) is estimated the group contribution method using C and H building blocks also given in Table 24.3:
(\Sigma n_{i})_{B}=2\cdot n_{C}+4\cdot n_{H}=2(16.5)+4(1.98)=40.92
Therefore, the diffusion coefficient estimated by the Fuller–Schettler–Giddings correlation is
D_{A B}=\frac{\mathrm{0.001~}T^{1.75}\left(\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)^{1/2}}{P\Big[(\Sigma n_{i})_{A}^{1/3}+(\Sigma n_{i})_{B}^{1/3}\Big]^{2}} = \frac{0.001\left(350\right)^{1.75}\left(\frac{1}{44}+\frac{1}{28}\right)^{1/2}}{\left(2.0\right)\left[\left(26.9\right)^{1/3}+\left(40.92\right)^{1/3}\right]^{2}}=0.082\,\mathrm{cm}^{2}/s
The two correlations agree within 7%.
For the CO-C_{2}H_{4} binary pair, with A CO , and B ethylene (C_{2}H_{4}) , from Appendix J, Table J.1, the measured diffusion coefficient is { D}_{A B}=0.151\,\mathrm{cm}^{2}/s at 1.0 atm and 273 K. By the Hirschfelder extrapolation, the diffusion coefficient at 2.0 atm and 350 K is
D_{A B}(T,P)=D_{A B}(T_{o},P_{o})\left(\frac{P_{o}}{P}\right)\left(\frac{T}{T_{o}}\right)^{3/2}\frac{\Omega_{D}(T_{o})}{\Omega_{D}(T)}
=\left(0.151{\frac{\mathrm{cm}^{2}}{\mathrm{s}}}\right)\left({\frac{1.0\,\mathrm{atm}}{2.0\,\mathrm{atm}}}\right)\left({\frac{350\,\mathrm{K}}{273\,\mathrm{K}}}\right)^{3/2}\left({\frac{1.112}{1.022}}\right)=0.119\,\mathrm{cm}^{2}/\mathrm{s}.
Table J.1 Binary mass diffusivities in \mathrm{gascs}^{\dagger}
System | T ( K ) | D_{ABP} ( cm² atm / s ) | D_{ABP} ( m² Pa / s ) |
Air | |||
Ammonia | 273 | 0.198 | 2.006 |
Aniline | 298 | 0.0726 | 0.735 |
Benzene | 298 | 0.0962 | 0.974 |
Bromine | 293 | 0.091 | 0.923 |
Carbon dioxide | 273 | 0.136 | 1.378 |
Carbon disulfide | 273 | 0.0883 | 0.894 |
Chlorine | 273 | 0.124 | 1.256 |
Diphenyl | 491 | 0.160 | 1.621 |
Ethyl acetate | 273 | 0.0709 | 0.718 |
Ethanol | 298 | 0.132 | 1.337 |
Ethyl ether | 293 | 0.0896 | 0.908 |
Iodine | 298 | 0.0834 | 0.845 |
Methanol | 298 | 0.162 | 1.641 |
Mercury | 614 | 0.473 | 4.791 |
Naphthalene | 298 | 0.0611 | 0.619 |
Nitrobenzene | 298 | 0.0868 | 0.879 |
n – Octane | 298 | 0.0602 | 0.610 |
Oxygen | 273 | 0.175 | 1.773 |
Propyl acetate | 315 | 0.092 | 0.932 |
Sulfur dioxide | 273 | 0.122 | 1.236 |
Toluene | 298 | 0.0844 | 0.855 |
Water | 298 | 0.260 | 2.634 |
Ammonia | |||
Ethylene | 293 | 0.177 | 1.793 |
Argon | |||
Neon | 293 | 0.329 | 3.333 |
Carbon dioxide | |||
Benzene | 318 | 0.0715 | 0.724 |
Carbon disulfide | 318 | 0.0715 | 0.724 |
Ethyl acetate | 319 | 0.0666 | 0.675 |
(continued) |
Table J.1 (Continued) | |||
System | T ( K ) | D_{ABP} ( cm² atm / s ) | D_{ABP} ( m² Pa / s ) |
Ethanol | 273 | 0.0693 | 0.702 |
Ethyl ether | 273 | 0.0541 | 0.548 |
Hydrogen | 273 | 0.550 | 5.572 |
Methane | 273 | 0.153 | 1.550 |
Methanol | 298.6 | 0.105 | 1.064 |
Nitrogen | 298 | 0.165 | 1.672 |
Nitrous oxide | 298 | 0.117 | 1.185 |
Propane | 298 | 0.0863 | 0.874 |
Water | 298 | 0.164 | 1.661 |
Carbon monoxide | |||
Ethylene | 273 | 0.151 | 1.530 |
Hydrogen | 273 | 0.651 | 6.595 |
Nitrogen | 288 | 0.192 | 1.945 |
Oxygen | 273 | 0.185 | 1.874 |
Helium | |||
Argon | 273 | 0.641 | 6.493 |
Benzene | 298 | 0.384 | 3.890 |
Ethanol | 298 | 0.494 | 5.004 |
Hydrogen | 293 | 1.64 | 16.613 |
Neon | 293 | 1.23 | 12.460 |
Water | 298 | 0.908 | 9.198 |
Hydrogen | |||
Ammonia | 293 | 0.849 | 8.600 |
Argon | 293 | 0.770 | 7.800 |
Benzene | 273 | 0.317 | 3.211 |
Ethane | 273 | 0.439 | 4.447 |
Methane | 273 | 0.625 | 6.331 |
Oxygen | 273 | 0.697 | 7,061 |
Water | 293 | 0.850 | 8.611 |
Nitrogen | |||
Ammonia | 293 | 0.241 | 2.441 |
Ethylene | 298 | 0.163 | 1.651 |
Hydrogen | 288 | 0.743 | 7.527 |
Iodine | 273 | 0.070 | 0.709 |
Oxygen | 273 | 0.181 | 1.834 |
Oxygen | |||
Ammonia | 293 | 0.253 | 2.563 |
Benzene | 296 | 0.0939 | 0.951 |
Ethylene | 293 | 0.182 | 1.844 |
^†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958, Chapter 8.
Table 24.3 Atomic diffusion volumes for use in estimating D_{AB} by the method of Fuller, Schettler, and Giddings^{10}
Atomic and Structure Diffusion-Volume Increments, {n}_{i} | |||||
C | 16.5 | CI | 19.5 | ||
H | 1.98 | S | 17.0 | ||
O | 5.48 | Aromatic Ring | -20.2 | ||
N | 5.69 | Heterocyclic Ring | -20.2 | ||
Diffusion Volumes for Simple Molecules, n | |||||
H_{2} | 7.07 | Ar | 16.1 | \mathrm{H}_{2}\mathrm{O} | 12.7 |
D_{2} | 6.70 | Kr | 22.8 | \mathrm{C}(\mathrm{Cl}_{2})(\mathrm{F}_{2}) | 114.8 |
He | 2.88 | CO | 18.9 | \mathrm{SF}_{6} | 69.7 |
N_{2} | 17.9 | CO_{2} | 26.9 | \mathrm{Cl}_{2} | 37.7 |
O_{2} | 16.6 | N_{2}O | 35.9 | \mathrm{Br}_{2} | 67.2 |
Air | 20.1 | NH_{3} | 14.9 | \mathrm{SO}_{2} | 41.1 |
Table K.1 The collision integrals, \Omega_\mu \text { and } \Omega_D, based on the Lennard–Jones potential†
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
\Omega_D (for mass diffusivity |
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
\Omega_D (for mass diffusivity) |
1.75 | 1.234 | 1.128 | |||
0.30 | 2.785 | 2.662 | 1.80 | 1.221 | 1.116 |
0.35 | 2.628 | 2.476 | 1.85 | 1.209 | 1.105 |
0.40 | 2.492 | 2.318 | 1.90 | 1.197 | 1.094 |
0.45 | 2.368 | 2.184 | 1.95 | 1.186 | 1.084 |
0.50 | 2.257 | 2.066 | 2.00 | 1.175 | 1.075 |
0.55 | 2.156 | 1.966 | 2.10 | 1.156 | 1.057 |
0.60 | 2.065 | 1.877 | 2.20 | 1.138 | 1.041 |
0.65 | 1.982 | 1.798 | 2.30 | 1.122 | 1.026 |
0.70 | 1.908 | 1.729 | 2.40 | 1.107 | 1.012 |
0.75 | 1.841 | 1.667 | 2.50 | 1.093 | 0.9996 |
0.80 | 1.780 | 1.612 | 2.60 | 1.081 | 0.9878 |
0.85 | 1.725 | 1.562 | 2.70 | 1.069 | 0.9770 |
0.90 | 1.675 | 1.517 | 2.80 | 1.058 | 0.9672 |
0.95 | 1.629 | 1.476 | 2.90 | 1.048 | 0.9576 |
1.00 | 1.587 | 1.439 | 3.00 | 1.039 | 0.9490 |
1.05 | 1.549 | 1.406 | 3.10 | 1.030 | 0.9406 |
1.10 | 1.514 | 1.375 | 3.20 | 1.022 | 0.9328 |
1.15 | 1.482 | 1.346 | 3.30 | 1.014 | 0.9256 |
1.20 | 1.452 | 1.320 | 3.40 | 1.007 | 0.9186 |
1.25 | 1.424 | 1.296 | 3.50 | 0.9999 | 0.9120 |
1.30 | 1.399 | 1.273 | 3.60 | 0.9932 | 0.9058 |
1.35 | 1.375 | 1.253 | 3.70 | 0.9870 | 0.8998 |
1.40 | 1.353 | 1.233 | 3.80 | 0.9811 | 0.8942 |
1.45 | 1.333 | 1.215 | 3.90 | 0.9755 | 0.8888 |
1.50 | 1.314 | 1.198 | 4.00 | 0.9700 | 0.8836 |
1.55 | 1.296 | 1.182 | 4.10 | 0.9649 | 0.8788 |
1.60 | 1.279 | 1.167 | 4.20 | 0.9600 | 0.8740 |
1.65 | 1.264 | 1.153 | 4.30 | 0.9553 | 0.8694 |
(continued) |
Table K.1 (Continued) | |||||
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
\Omega_D (for mass diffusivity |
κT/ ϵ | \Omega_\mu=\Omega_k (for viscosity and thermal conductivity) |
\Omega_D (for mass diffusivity) |
1.70 | 1.248 | 1.140 | 4.40 | 0.9507 | 0.8652 |
4.50 | 0.9464 | 0.8610 | 10.0 | 0.8242 | 0.7424 |
4.60 | 0.9422 | 0.8568 | 20.0 | 0.7432 | 0.6640 |
4.70 | 0.9382 | 0.8530 | 30.0 | 0.7005 | 0.6232 |
4.80 | 0.9343 | 0.8492 | 40.0 | 0.6718 | 0.5960 |
4.90 | 0.9305 | 0.8456 | 50.0 | 0.6504 | 0.5756 |
5.0 | 0.9269 | 0.8422 | 60.0 | 0.6335 | 0.5596 |
6.0 | 0.8963 | 0.8124 | 70.0 | 0.6194 | 0.5464 |
7.0 | 0.8727 | 0.7896 | 80.0 | 0.6076 | 0.5352 |
8.0 | 0.8538 | 0.7712 | 90.0 | 0.5973 | 0.5256 |
Table K.2 Lennard–Jones force constants calculated from viscosity data^†
Compound | Formula | \epsilon_A / \kappa, \text { in }(\mathrm{K}) | \sigma ,\ in\ \mathring{A} |
Acetylene | C₂H₂ | 185 | 4.221 |
Air | 97 | 3.617 | |
Argon | A | 124 | 3.418 |
Arsine | AsH_3 | 281 | 4.06 |
Benzene | C_6H_6 | 440 | 5.270 |
Bromine | Br₂ | 520 | 4.268 |
i – Butane | C_{4}H_{10} | 313 | 5.341 |
n – Butane | C_{4}H_{10} | 410 | 4.997 |
Carbon dioxide | CO₂ | 190 | 3.996 |
Carbon disulfide | CS₂ | 488 | 4.438 |
Carbon monoxide | CO | 110 | 3.590 |
Carbon tetrachloride | CCl_4 | 327 | 5.881 |
Carbonyl sulfide | COS | 335 | 4.13 |
Chlorine | Cl₂ | 357 | 4.115 |
Chloroform | CHCl_3 | 327 | 5.430 |
Cyanogen | C₂N₂ | 339 | 4.38 |
Cyclohexane | C_6H_{12} | 324 | 6.093 |
Ethane | C₂H_6 | 230 | 4.418 |
Ethanol | C₂H_5OH | 391 | 4.455 |
Ethylene | C₂H_6 | 205 | 4.232 |
Fluorine | F₂ | 112 | 3.653 |
Helium | He | 10.22 | 2.576 |
n – Heptane | C₂H_{16} | 282^‡ | 8.88^3 |
n – Hexane | C_6H_{14} | 413 | 5.909 |
Hydrogen | H₂ | 33.3 | 2.968 |
Hydrogen chloride | HCl | 360 | 3.305 |
^†R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, New York, 1958.
^‡Calculated from virial coefficients.¹
Table K.2 (Continued) | |||
Compound | Formula | \epsilon_A / \kappa, \text { in }(\mathrm{K}) | \sigma ,\ in\ \mathring{A} |
Hydrogen iodide | HI | 324 | 4.123 |
Iodine | I₂ | 550 | 4.982 |
Krypton | Kr | 190 | 3.60 |
Methane | CH_4 | 136.5 | 3.822 |
Methanol | CH_3OH | 507 | 3.585 |
Methylene chloride | CH₂Cl₂ | 406 | 4.759 |
Methyl chloride | CH_3CH | 855 | 3.375 |
Mercuric iodide | Hgl₂ | 691 | 5.625 |
Mercury | Hg | 851 | 2.898 |
Neon | Ne | 35.7 | 2.789 |
Nitric oxide | NO | 119 | 3.470 |
Nitrogen | N₂ | 91.5 | 3.681 |
Nitrous oxide | N₂O | 220 | 3.879 |
n – Nonane | C_9H_{20} | 240 | 8.448 |
n – Octane | C_8H_{18} | 320 | 7.451 |
Oxygen | O₂ | 113 | 3.433 |
n – Pentane | C_5H_{12} | 345 | 5.769 |
Propane | C_3H_8 | 254 | 5.061 |
Silane | SiH_4 | 207.6 | 4.08 |
Silicon tetrachloride | SiCl_4 | 358 | 5.08 |
Sulfur dioxide | SO₂ | 252 | 4.290 |
Water | H₂O | 356 | 2.649 |
Xenon | Xe | 229 | 4.055 |