Question 18.2: Determine the shape factor for the I-section beam shown in F...

Determine the shape factor for the I-section beam shown in Fig. 18.5(a).

18.5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Again, as in Ex. 18.1, the elastic and plastic neutral axes coincide with the centroid, \mathrm{G}, of the section.

In the fully plastic condition the stress distribution in the beam is that shown in Fig. 18.5(b). The total direct force in the upper flange is

\sigma_{\mathrm{Y}} b t_{\mathrm{f}} \quad(\text { compression) }

and its moment about \mathrm{G} z is

\sigma_{\mathrm{Y}} b t_{\mathrm{f}}\left(\frac{d}{2}-\frac{t_{\mathrm{f}}}{2}\right) \equiv \frac{\sigma_{\mathrm{Y}} b t_{\mathrm{f}}}{2}\left(d-t_{\mathrm{f}}\right)        (i)

Similarly the total direct force in the web above \mathrm{G} z is

\sigma_{\mathrm{Y}} t_{\mathrm{W}}\left(\frac{d}{2}-t_{\mathrm{f}}\right) \quad \text { (compression) }

and its moment about \mathrm{G} z is

\sigma_{\mathrm{Y}} t_{\mathrm{w}}\left(\frac{d}{2}-t_{\mathrm{f}}\right) \frac{1}{2}\left(\frac{d}{2}-t_{\mathrm{f}}\right) \equiv \frac{\sigma_{\mathrm{Y}} t_{\mathrm{w}}}{8}\left(d-2 t_{\mathrm{f}}\right)^{2}      (ii)

The lower half of the section is in tension and contributes the same moment about \mathrm{G} z so that the total plastic moment, M_{\mathrm{P}}, of the complete section is given by

M_{\mathrm{P}}=\sigma_{\mathrm{Y}}\left[b t_{\mathrm{f}}\left(d-t_{\mathrm{f}}\right)+\frac{1}{4} t_{\mathrm{w}}\left(d-2 t_{\mathrm{f}}\right)^{2}\right]     (iii)

Comparing Eqs (18.5)

M_{\mathrm{P}}=\sigma_{\mathrm{Y}}Z_{\mathrm{P}}        (18.5)

and (iii) we see that Z_{\mathrm{P}} is given by

Z_{\mathrm{P}}=b t_{\mathrm{f}}\left(d-t_{\mathrm{f}}\right)+\frac{1}{4} t_{\mathrm{W}}\left(d-2 t_{\mathrm{f}}\right)^{2}      (iv)

Alternatively we could have obtained Z_{\mathrm{P}} from Eq. (18.6).

Z_{\mathrm{P}}={\frac{A({{{\bar{y}_{1}}}}+{{{\bar{y}_{2}}}})}{2}}      (18.6)

The second moment of area, I, of the section about the common neutral axis is

I=\frac{b d^{3}}{12}-\frac{\left(b-t_{\mathrm{w}}\right)\left(d-2 t_{\mathrm{f}}\right)^{3}}{12}

so that the elastic modulus Z_{\mathrm{e}} is given by

Z_{\mathrm{e}}=\frac{I}{d / 2}=\frac{2}{d}\left[\frac{b d^{3}}{12}-\frac{\left(b-t_{\mathrm{w}}\right)\left(d-2 t_{\mathrm{f}}\right)^{3}}{12}\right]       (v)

Substituting the actual values of the dimensions of the section in Eqs (iv) and (v) we obtain

Z_{\mathrm{P}}=150 \times 12(300-12)+\frac{1}{4} \times 8(300-2 \times 12)^{2}=6.7 \times 10^{5} \mathrm{~mm}^{3}

and

Z_{\mathrm{e}}=\frac{2}{300}\left[\frac{150 \times 300^{3}}{12}-\frac{(150-8)(300-24)^{3}}{12}\right]=5.9 \times 10^{5} \mathrm{~mm}^{3}

Therefore from Eq. (18.7)

f={\frac{M_{\mathrm{P}}}{M_{\mathrm{Y}}}}={\frac{\sigma _{\mathrm{Y}}Z_{\mathrm{P}}}{\sigma_{\mathrm{Y}}Z_{\mathrm{e}}}}={\frac{Z_{\mathrm{P}}}{Z_{\mathrm{e}}}}      (18.7)

f=\frac{M_{\mathrm{P}}}{M_{\mathrm{Y}}}=\frac{Z_{\mathrm{P}}}{Z_{\mathrm{e}}}=\frac{6.7 \times 10^{5}}{5.9 \times 10^{5}}=1.14

and we see that the fully plastic moment is only 14 \% greater than the moment at initial yielding.

Related Answered Questions

Question: 18.9

Verified Answer:

Since the vertical members are the weaker members ...
Question: 18.3

Verified Answer:

In this case the elastic and plastic neutral axes ...
Question: 18.1

Verified Answer:

The elastic and plastic neutral axes of a rectangu...