Question 13.3: The DC motor associated with the reaction wheel and spacecra...

The DC motor associated with the reaction wheel and spacecraft from Example 13.2 has the following parameters: motor torque constant K_{m}=0.043 \mathrm{N}-m/A, back-emf constant K_{b}=0.043 \mathrm{~V}-s / \mathrm{rad}, resistance R=2.8  \Omega, and friction coefficient b=6\left(10^{-5}\right) \mathrm{N}-m-s/rad. Determine the input voltage to the DC motor required to maintain a constant wheel spin rate of 3,000 rpm.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We can manipulate Eq. (13.40)

T_{m}={\frac{K_{m}}{R}}(e_{\mathrm{in}}-K_{b}\omega_{w})      (13.40)

to obtain the DC motor’s input voltage in terms of motor torque and the wheel’s angular velocity:

e_{\text {in }}=\frac{R}{K_{m}} T_{m}+K_{b} \omega_{w}

Equations (13.33) or (13.36)

\dot{\omega}_{w}=\frac{1}{I_{w}}(T_{m}-b\omega_{w})-\ddot{\phi}     (13.33)

\dot{\omega}_{w}=\frac{I_{3}}{I_{\mathrm{sat}}I_{w}}(T_{m}-b\omega_{w})       (13.36)

show that the motor torque T_{m} is balanced by the wheel’s friction torque b \omega_{w} when the wheel reaches a constant angular velocity. Hence, the motor torque is

T_{m}=b \omega_{w}=\left[6\left(10^{-5}\right) \mathrm{N}-\mathrm{m}-\mathrm{s} / \mathrm{rad}\right](314.1593  \mathrm{rad} / \mathrm{s})=0.018850 \mathrm{~N}-\mathrm{m}

Note that the wheel’s angular velocity \omega_{w} must be expressed in rad/s (i.e., 3,000 rpm = 314.1593  \mathrm{rad} / \mathrm{s}). Therefore, the input voltage is

\begin{aligned} e_{\text {in }} & =\frac{R}{K_{m}} T_{m}+K_{b} \omega_{w} \\ & =(2.8  \Omega)(0.018850 \mathrm{~N}-\mathrm{m}) / 0.043 \mathrm{~N}-\mathrm{m} / \mathrm{A}+(0.043 \mathrm{~V}-\mathrm{s} / \mathrm{rad})(314.1593  \mathrm{rad} / \mathrm{s}) \\ & =14.736 \mathrm{~V} \end{aligned}

The back-emf voltage from the motor rotation is e_{b}=K_{b} \omega_{w}=13.509 \mathrm{~V}, and the motor current is i_{m}=\left(e_{\text {in }}-e_{b}\right) / R=0.438 \mathrm{~A}.

Related Answered Questions