Question : A shaft rotating at 200 r.p.m. drives another shaft at 300 r...

A shaft rotating at 200 r.p.m. drives another shaft at 300 r.p.m. and transmits 6 kW through a belt. The belt is 100 mm wide and 10 mm thick. The distance between the shafts is 4m.The smaller pulley is 0.5 m in diameter. Calculate the stress in the belt, if it is 1. an open belt drive, and 2. a cross belt drive. Take \mu=0.3.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :   N_{1}=200 r . p . m . ; N_{2}=300 r . p . m . ; P=6 kW =6 \times 10^{3} W ; b=100 mm ; t=10 mm ; x=4 m ; d_{2}=0.5 m ; \mu=0.3

Let    \sigma = Stress in the belt.

 

1. Stress in the belt for an open belt drive

First of all, let us find out the diameter of larger pulley \left(d_{1}\right). We know that

\frac{N_{2}}{N_{1}}=\frac{d_{1}}{d_{2}} \text { or } d_{1}=\frac{N_{2} \cdot d_{2}}{N_{1}}=\frac{300 \times 0.5}{200}=0.75 m

and velocity of the belt,       v=\frac{\pi d_{2} \cdot N_{2}}{60}=\frac{\pi \times 0.5 \times 300}{60}=7.855 m / s

Now let us find the angle of contact on the smaller pulley. We know that, for an open belt drive,

\sin \alpha=\frac{r_{1}-r_{2}}{x}=\frac{d_{1}-d_{2}}{2 x}=\frac{0.75-0.5}{2 \times 4}=0.03125 \text { or } \alpha=1.8^{\circ}

\therefore Angle of contact,     \theta=180^{\circ}-2 \alpha=180-2 \times 1.8=176.4^{\circ}

=176.4 \times \pi / 180=3.08 rad

Let     T_{1} = Tension in the tight side of the belt, and

T_{2} = Tension in the slack side of the belt.

We know that

2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.3 \times 3.08=0.924

\therefore        \log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.924}{2.3}=0.4017 \text { or } \frac{T_{1}}{T_{2}}=2.52       …(i)                                                                               …(Taking antilog of 0.4017)

We also know that power transmitted (P),

6 \times 10^{3}=\left(T_{1}-T_{2}\right) v=\left(T_{1}-T_{2}\right) 7.855

 

\therefore        T_{1}-T_{2}=6 \times 10^{3} / 7.855=764 N …(ii)

From equations (i) and (ii),

T_{1}=1267 N , \text { and } T_{2}=503 N

We know that maximum tension in the belt \left(T_{1}\right),

1267=\sigma . b . t=\sigma \times 100 \times 10=1000 \sigma

 

\therefore           \sigma=1267 / 1000=1.267 N / mm ^{2}=1.267 MPa \ldots\left[\because 1 MPa =1 MN / m ^{2}=1 N / mm ^{2}\right]

 

Stress in the belt for a cross belt drive

We know that for a cross belt drive,

\sin \alpha=\frac{r_{1}+r_{2}}{x}=\frac{d_{1}+d_{2}}{2 x}=\frac{0.75+0.5}{2 \times 4}=0.1562 \text { or } \alpha=9^{\circ}

\therefore    Angle of contact,          \theta=180^{\circ}+2 \alpha=180+2 \times 9=198^{\circ}

=198 \times \pi / 180=3.456 rad

We know that

2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.3 \times 3.456=1.0368

 

\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{1.0368}{2.3}=0.4508 \text { or } \frac{T_{1}}{T_{2}}=2.82      …(iii)                                                    …(Taking antilog of 0.4508)

T_{1}=1184 N \text { and } T_{2}=420 N

We know that maximum tension in the belt \left(T_{1}\right),

1184=\sigma . b . t=\sigma \times 100 \times 10=1000 \sigma

\therefore       \sigma=1184 / 1000=1.184 N / mm ^{2}=1.184 MPa