Question 2.1.6: Find the complete response of the following equation. ẍ + 4...

Find the complete response of the following equation.

\ddot{x}+4 \dot{x}+53 x=15 u_s(t) \quad x(0)=8 \quad \dot{x}(0)=-19

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We cannot use Table 2.1.1 for this part because the intial conditions are not zero. Comparing this equation with the form in Table 2.1.2, we see that a = 4, b = 53, and c = 15. The characteristic equation is s² + 4s + 53 = 0 and its roots are s = −2 ± 7j. This corresponds to entry 4 in the table, where 𝜎 = −2 and 𝜔 = 7. Thus, the form of the solution is

x(t)=e^{-2 t}\left(C_1 \sin 7 t+C_2 \cos 7 t\right)+\frac{15}{53}

and

\dot{x}(t)=-2 e^{-2 t}\left(C_1 \sin 7 t+C_2 \cos 7 t\right)+e^{-2 t}\left(7 C_1 \cos 7 t-7 C_2 \sin 7 t\right)

Now evaluate these using the initial conditions

x(0)=8=C_2+\frac{15}{53}

which gives C_2 = 409 ∕ 53. Also,

\dot{x}(0)=-19=-2\left(\frac{409}{53}\right)+7 C_1

Thus, C_1 = −27∕53, and the solution is

x(t)=e^{-2 t}\left(\frac{409}{53}\cos 7 t-\frac{27}{53}\sin 7 t\right)+\frac{15}{53}

The solution is plotted in Figure 2.1.10. The radian frequency of the oscillations is 7, which corresponds to a period of 2𝜋 ∕ 7 = 0.867. The oscillations are difficult to see for t > 2 because e^{−2t} < 0.02 for t > 2. So, for most practical purposes, we may say that the response is essentially constant at the steady-state response 15 ∕ 53 for t > 2.

Table 2.1.1 Step response for zero initial conditions.
ODE Roots x(t)
\text{1.}\quad\dot{x}+a x=M u_s(t) s = −a x(t)=\frac{M}{a}\left(1-e^{-a t}\right)
\text{2.}\quad\ddot{x}+(a+b) \dot{x}+a b x=M u_s(t) s = −a, −b     a ≠ b x(t)=M\left[\frac{e^{-a t}}{a(a-b)}+\frac{e^{-b t}}{b(b-a)}+\frac{1}{a b}\right]
\text{3.}\quad\ddot{x}+2 a \dot{x}+a^2 x=M u_s(t) s = −a, −a x(t)=\frac{M}{a^2}\left[1-(a t+1) e^{-a t}\right]
\text{4.}\quad\ddot{x}+b^2 x=M u_s(t) s = ±bj   b > 0 x(t)=\frac{M}{b^2}(1-\cos b t)
\text{5.}\quad\ddot{x}+2 a \dot{x}+\left(a^2+b^2\right) x=M u_s(t) s = −a ± bj    b > 0 x(t)=\frac{M}{a^2+b^2}\left[1-\left(\frac{a}{b}\sin b t+\cos b t\right) e^{-a t}\right]

 

Equation Solution form
First order: \dot{x}+a x=b~~~a\neq0

Second order: \ddot{x}+a\dot{x}+b x=c\quad b\neq0

x(t)={\frac{b}{a}}+C e^{-a t}
1. (a^{2}\gt 4b)\;\mathrm{distinct,real\;roots:}s_{1},s_{2} x(t)=C_{1}e^{s_{1}t}+C_{2}e^{s_{2}t}+\frac{c}{b}
2. (a^{2}=4b)\,\mathrm{repeated,\,real\,roots:}s_{1},s_{1} x(t)=(C_{1}+t C_{2})e^{s_{1}t}+{\frac{c}{b}}
3. \begin{array}{l c r}{{(a=0,b\gt 0)\operatorname*{imaginary}\operatorname{roots}s=\pm\,j\omega,}}\\ {{\omega={\sqrt{b}}}}\end{array} x(t)=C_{1}\sin\omega t+C_{2}\cos\omega t+{\frac{c}{b}}
4. \begin{array}{l c r}{{(a\neq0,\,a^{2}\lt 4b)\,\text{complex roots}:\,s=\sigma\pm j\omega,}}\\ {{\sigma=-a/2,\,\omega={\sqrt{4b-a^{2}}}/2}}\end{array} x(t)=e^{\sigma t}(C_{1}\sin\omega t+C_{2}\cos\omega t)+{\frac{c}{b}}

 

152624-Figure 2.1.10

Related Answered Questions

Question: 2.7.7

Verified Answer:

a. The denominator roots are s = −3 ± 5j. To avoid...
Question: 2.7.5

Verified Answer:

There are four repeated roots (s = 0) and one dist...
Question: 2.7.2

Verified Answer:

The denominator roots are s= −12/3= −4, s=0, and s...