Question 2.1.6: Find the complete response of the following equation. ẍ + 4...
Find the complete response of the following equation.
\ddot{x}+4 \dot{x}+53 x=15 u_s(t) \quad x(0)=8 \quad \dot{x}(0)=-19
Learn more on how we answer questions.
We cannot use Table 2.1.1 for this part because the intial conditions are not zero. Comparing this equation with the form in Table 2.1.2, we see that a = 4, b = 53, and c = 15. The characteristic equation is s² + 4s + 53 = 0 and its roots are s = −2 ± 7j. This corresponds to entry 4 in the table, where 𝜎 = −2 and 𝜔 = 7. Thus, the form of the solution is
x(t)=e^{-2 t}\left(C_1 \sin 7 t+C_2 \cos 7 t\right)+\frac{15}{53}
and
\dot{x}(t)=-2 e^{-2 t}\left(C_1 \sin 7 t+C_2 \cos 7 t\right)+e^{-2 t}\left(7 C_1 \cos 7 t-7 C_2 \sin 7 t\right)
Now evaluate these using the initial conditions
x(0)=8=C_2+\frac{15}{53}
which gives C_2 = 409 ∕ 53. Also,
\dot{x}(0)=-19=-2\left(\frac{409}{53}\right)+7 C_1
Thus, C_1 = −27∕53, and the solution is
x(t)=e^{-2 t}\left(\frac{409}{53}\cos 7 t-\frac{27}{53}\sin 7 t\right)+\frac{15}{53}
The solution is plotted in Figure 2.1.10. The radian frequency of the oscillations is 7, which corresponds to a period of 2𝜋 ∕ 7 = 0.867. The oscillations are difficult to see for t > 2 because e^{−2t} < 0.02 for t > 2. So, for most practical purposes, we may say that the response is essentially constant at the steady-state response 15 ∕ 53 for t > 2.
Table 2.1.1 Step response for zero initial conditions. | ||
ODE | Roots | x(t) |
\text{1.}\quad\dot{x}+a x=M u_s(t) | s = −a | x(t)=\frac{M}{a}\left(1-e^{-a t}\right) |
\text{2.}\quad\ddot{x}+(a+b) \dot{x}+a b x=M u_s(t) | s = −a, −b a ≠ b | x(t)=M\left[\frac{e^{-a t}}{a(a-b)}+\frac{e^{-b t}}{b(b-a)}+\frac{1}{a b}\right] |
\text{3.}\quad\ddot{x}+2 a \dot{x}+a^2 x=M u_s(t) | s = −a, −a | x(t)=\frac{M}{a^2}\left[1-(a t+1) e^{-a t}\right] |
\text{4.}\quad\ddot{x}+b^2 x=M u_s(t) | s = ±bj b > 0 | x(t)=\frac{M}{b^2}(1-\cos b t) |
\text{5.}\quad\ddot{x}+2 a \dot{x}+\left(a^2+b^2\right) x=M u_s(t) | s = −a ± bj b > 0 | x(t)=\frac{M}{a^2+b^2}\left[1-\left(\frac{a}{b}\sin b t+\cos b t\right) e^{-a t}\right] |
Equation | Solution form |
First order: \dot{x}+a x=b~~~a\neq0
Second order: \ddot{x}+a\dot{x}+b x=c\quad b\neq0 |
x(t)={\frac{b}{a}}+C e^{-a t} |
1. (a^{2}\gt 4b)\;\mathrm{distinct,real\;roots:}s_{1},s_{2} | x(t)=C_{1}e^{s_{1}t}+C_{2}e^{s_{2}t}+\frac{c}{b} |
2. (a^{2}=4b)\,\mathrm{repeated,\,real\,roots:}s_{1},s_{1} | x(t)=(C_{1}+t C_{2})e^{s_{1}t}+{\frac{c}{b}} |
3. \begin{array}{l c r}{{(a=0,b\gt 0)\operatorname*{imaginary}\operatorname{roots}s=\pm\,j\omega,}}\\ {{\omega={\sqrt{b}}}}\end{array} | x(t)=C_{1}\sin\omega t+C_{2}\cos\omega t+{\frac{c}{b}} |
4. \begin{array}{l c r}{{(a\neq0,\,a^{2}\lt 4b)\,\text{complex roots}:\,s=\sigma\pm j\omega,}}\\ {{\sigma=-a/2,\,\omega={\sqrt{4b-a^{2}}}/2}}\end{array} | x(t)=e^{\sigma t}(C_{1}\sin\omega t+C_{2}\cos\omega t)+{\frac{c}{b}} |
