Question 11.CSGP.132: The effect of a number of open feedwater heaters on the ther......

The effect of a number of open feedwater heaters on the thermal efficiency of an ideal cycle is to be studied. Steam leaves the steam generator at 20 MPa, 600°C, and the cycle has a condenser pressure of 10 kPa. Determine the thermal efficiency for each of the following cases. A: No feedwater heater. B: One feedwater heater operating at 1 MPa. C: Two feedwater heaters, one operating at 3 MPa and the other at 0.2 MPa.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a) no feed water heater

\begin{aligned}w _{ P } & =\int_1^2 vdP \\& \approx 0.00101(20000-10) \\& =20.2\, kJ / kg\end{aligned}

\begin{aligned}h _2 & = h _1+ w _{ p }=191.8+20.2=212.0 \\s _4 & = s _3=6.5048 \\& =0.6493+ x _4 \times 7.5009 \\x _4 & =0.78064\end{aligned}

\begin{aligned}& h _4=191.83+0.78064 \times 2392.8 \\& \quad=2059.7 \\& w _{ T }= h _3- h _4=3537.6-2059.7 \\& \quad=1477.9 \,kJ / kg \\& w _{ N }= w _{ T }- w _{ P }=1477.9-20.2=1457.7 \\& q _{ H }= h _3- h _2=3537.6-212.0=3325.6\end{aligned}

\eta_{ TH }=\frac{ w _{ N }}{ q _{ H }}=\frac{1457.7}{3325.6}= 0 . 4 3 8

b) one feedwater heater

\begin{aligned}& w _{ P 12}=0.00101(1000-10) \\& \quad=1.0 \,kJ / kg \\& h _2= h _1+ w _{ P 12}=191.8+1.0=192.8 \\& w _{ P 34}=0.001127(20000-1000) \\& \quad=21.4\, kJ / kg \\& h _4= h _3+ w _{ P 34}=762.8+21.4=784.2 \\& s _6= s _5=6.5048 \\& \quad=2.1387+ x _6 \times 4.4478\end{aligned}

\begin{aligned}& x _6=0.9816 \\& h _6=762.8+0.9816 \times 2015.3=2741.1\end{aligned}

CV: heater
const:    m _3= m _6+ m _2=1.0 \,kg

1st law:    m _6 h _6+ m _2 h _2= m _3 h _3

m _6=\frac{762.8-192.8}{2741.1-192.8}=0.2237

\left. m _2=0.7763, h _7=2059.7\left(= h _4 \text { of part } a \right)\right)

CV: turbine

\begin{aligned}& w _{ T }=\left( h _5- h _6\right)+ m _2\left( h _6- h _7\right) \\&=(3537.6-2741.1)+0.7763(2741.1-2059.7)=1325.5 \,kJ / kg\end{aligned}

CV: pumps

\begin{aligned}& w _{ P }= m _1 w _{ P 12}+ m _3 w _{ P 34}=0.7763(1.0)+1(21.4)=22.2 \,kJ / kg \\& w _{ N }=1325.5-22.2=1303.3 \,kJ / kg\end{aligned}

CV: steam generator

\begin{aligned}& q _{ H }= h _5- h _4=3537.6-784.2=2753.4 \,kJ / kg \\& \eta_{ TH }= w _{ N } / q _{ H }=1303.3 / 2753.4= 0 . 4 7 3\end{aligned}

c) two feedwater heaters

\begin{aligned}& W _{ P 12}=0.00101 \times \\& (200-10) \\& =0.2 \,kJ / kg \\& h _2= w _{ p 12}+ h _1 \\& =191.8+0.2 \\& =192.0 \\& w _{ P 34}=0.001061 \times \\& \text { (3000 – 200) } \\& =3.0 \,kJ / kg \\& h _4= h _3+ w _{ P 34} \\& =504.7+3.0 \\& =507.7 \end{aligned}

\begin{aligned}w _{ P 56} & =0.001217(20000-3000) \\& =20.7 \,kJ / kg \\h _6= & h _5+ w _{ P 56}=1008.4+20.7=1029.1\end{aligned}

\left.\begin{array}{l}s _8= s _7=6.5048 \\\text { at } P _8=3 \,MPa\end{array}\right\} \begin{aligned}& T _8=293.2{ }^{\circ} C \\& h _8=2974.8\end{aligned}

\quad \quad s_9 = s_8 = 6.5048 = 1.5301 + x_9 \times 5.5970

x _9=0.8888 \Rightarrow h _9=504.7+0.888 \times 2201.9=2461.8 \,kJ / kg

CV: high pressure heater

\begin{array}{cl}\text { cont: } \quad m _5= m _4+ m _8=1.0 \,kg ; \quad 1 st \text { law: } m _5 h _5= m _4 h _4+ m _8 h _8 \\m _8=\frac{1008.4-507.7}{2974.8-507.7}=0.2030 \quad m _4=0.7970\end{array}

CV: low pressure heater

\begin{aligned}& \text { cont: } \quad m _9+ m _2= m _3= m _4 ; \quad 1 \text { st law: } m _9 h _9+ m _2 h _2= m _3 h _3 \\& m _9= \frac{0.7970(504.7-192.0)}{2461.8-192.0}=0.1098 \\& m _2=0.7970-0.1098=0.6872\end{aligned}

CV: turbine

\begin{aligned}w _{ T }= & \left( h _7- h _8\right)+\left(1- m _8\right)\left( h _8- h _9\right)+\left(1- m _8- m _9\right)\left( h _9- h _{10}\right) \\= & (3537.6-2974.8)+0.797(2974.8-2461.8) \\& +0.6872(2461.8-2059.7)=1248.0\,kJ / kg\end{aligned}

CV: pumps

\begin{aligned}& w _{ P }= m _1 w _{ P 12}+ m _3 w _{ P 34}+ m _5 w _{ P 56} \\& =0.6872(0.2)+0.797(3.0)+1(20.7)=23.2 \,kJ / kg \\& w _{ N }=1248.0-23.2=1224.8 \,kJ / kg\end{aligned}

CV: steam generator

\begin{aligned}& q _{ H }= h _7- h _6=3537.6-1029.1=2508.5 \,kJ / kg \\& \eta_{ TH }= w _{ N } / q _{ H }=1224.8 / 2508.5= 0 . 4 8 8\end{aligned}
91
92
93
94

Related Answered Questions