Question 8.8: A straight uniform column of length l and bending stiffness ......

A straight uniform column of length l and bending stiffness EI is subjected to uniform lateral loading w/unit length. The end attachments do not restrict rotation of the column ends. The longitudinal compressive force P has eccentricity e from the centroids of the end sections and is placed so as to oppose the bending effect of the lateral loading, as shown in Fig. P.8.8. The eccentricity e can be varied and is to be adjusted to the value, which, for given values of P and w, will result in the least maximum bending moment on the column. Show that

e=\left(w/P_{\mu^{2}}\right)\tan^{2} \mu l/4

where

\mu^{2}=P/E I

Deduce the end moment that gives the optimum condition when P tends to zero.

Answer:      w l^{2}/16.

p.8.8
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Referring to Fig. S.8.8, the bending moment at any section z is given by

M=P(e+v)-{\frac{w l}{2}}z+w{\frac{z^{2}}{2}}

or

M=P(e+v)+{\frac{w}{2}}{\bigl(}z^{2}-l z{\bigr)}           (i)

Substituting for M in the equation before Eq. (8.1),

E I{\cfrac{\mathrm{d}^{2}\nu}{\mathrm{d}z^{2}}}=-P_{\mathrm{CR}}\nu           (8.1)

 

E I{\frac{\mathrm{d}^{2}v}{\mathrm{d}z^{2}}}+P v=-P e-{\frac{w}{2}}(z^{2}-l z)

or

\frac{\mathrm{d}^{2}v}{\mathrm{d}z^{2}}+\mu^{2}v=-\mu^{2}e-\frac{w\mu^{2}}{2P}(z^{2}-l z)            (ii)

The solution of Eq. (ii) is

v=A\cos\mu z+B\sin\mu z-e+{\frac{w}{2P}}{\big(}l z-z^{2}{\big)}+{\frac{w}{\mu^{2}P}}            (iii)

When z = 0, υ  =0, hence A = e – w/μ²P. When z=l/2, dυ/dz = 0, which gives

B=A\tan{\frac{\mu l}{2}}=\left(e-{\frac{w}{\mu^{2}{ P}}}\right)\tan{\frac{\mu l}{2}}

Eq. (iii) then becomes

\ v=\left(e-{\frac{w}{\mu^{2}{P}}}\right)\left[{\frac{\cos\mu(z-l/2)}{\cos\mu l/2}}-1\right]+{\frac{w}{2P}}(l z-z^{2})           (iv)

The maximum bending moment will occur at mid-span where z=l/2 and υ = υ_{max}.

From Eq. (iv),

v_{\mathrm{max}}=\left(e-{\frac{E I w}{P^{2}}}\right)\left(\sec{\frac{\mu l}{2}}-1\right)+{\frac{w l^{2}}{8P}}

and from Eq. (i),

M(\operatorname{max})=P e+P v_{\operatorname*{max}}-{\frac{w l^{2}}{8}}

whence,

M(\operatorname{max})=\left(P e-{\frac{w}{\mu^{2}}}\right)\sec{\frac{\mu l}{2}}+{\frac{w}{\mu^{2}}}

For the maximum bending moment to be as small as possible, the bending moment at the ends of the column must be numerically equal to the bending moment at mid-span. Thus,

P e+\left(P e-\frac{w}{\mu^{2}}\right)\sec\frac{\mu l}{2}+\frac{w}{\mu^{2}}=0

or

P e\biggl(1+\sec{\frac{\mu l}{2}}\biggr)={\frac{w}{\mu^{2}}}\biggl(\sec{\frac{\mu l}{2}}-1\biggr)

Then

e={\frac{w}{P\mu^{2}}}{\left({\frac{1-\cos\mu l/2}{1+\cos\mu l/2}}\right)}

i.e.,

e=\left({\frac{w}{P\mu^{2}}}\right)\tan^{2}{\frac{\mu l}{4}}           (vi)

From Eq. (vi), the end moment is

P e={\frac{w}{\mu^{2}}}\mathrm{tan}^{2}{\frac{\mu l}{4}}={\frac{w l^{2}}{16}}\left({\frac{\tan\mu l/4}{\mu l/4}}\right)\left({\frac{\tan\mu l/4}{\mu l/4}}\right)

When P\rightarrow0,\tan\mu l/4\rightarrow\mu l/4 and the end moment becomes wl²/16.

s.8.8

Related Answered Questions

Question: 8.19

Verified Answer:

The three possible buckling modes of the column ar...
Question: 8.16

Verified Answer:

There are four boundary conditions to be satisfied...
Question: 8.15

Verified Answer:

The equation for the deflected center line of the ...