Question 12.CSGP.123: Redo the previous problem for a large stationary Brayton cyc......

Redo the previous problem for a large stationary Brayton cycle where the low T heat rejection is used in a process application and thus has a non-zero exergy.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The thermal efficiency (first law) is Eq.12.1

\eta_{ TH }=\frac{\dot{ W }_{\text {net }}}{\dot{ Q }_{ H }}=\frac{ w _{\text {net }}}{ q _{ H }}=1- r _{ p }^{-( k -1) / k }

The corresponding 2^{\text {nd }} \text { law } efficiency is

\eta_{ II }=\frac{ w _{\text {net }}}{\Phi_{ H }-\Phi_{ L }}=\frac{ h _3- h _2-\left( h _4- h _1\right)}{ h _3- h _2- T _{ o }\left( s _3- s _2\right)}

where we used

\begin{aligned}& \Phi_{ H }=\text { increase in flow exergy }=\Psi_3-\Psi_2= h _3- h _2- T _{ o }\left( s _3- s _2\right) \\& \Phi_{ L }=\text { rejection of flow exergy }=\Psi_4-\Psi_1= h _4- h _1- T _{ o }\left( s _4- s _1\right)\end{aligned}

Now divide all terms with the difference h _3- h _2 to get

\begin{aligned}& w _{\text {net }} /\left( h _3- h _2\right)= \eta _{ TH } ; \\& \Phi_{ H } /\left( h _3- h _2\right)=1- T _{ o }\left( s _3- s _2\right)\left( h _3- h _2\right)=1- T _{ o } \ln \left( T _3 / T _2\right)\left( T _3- T _2\right)^{-1} \\& \Phi_{ L } /\left( h _3- h _2\right)=\frac{ h _4- h _1}{ h _3- h _2}\left[1- T _{ o } \frac{ s _4- s _1}{ h _4- h _1}\right]=\left(1- \eta _{ TH }\right)\left[1- T _{ o } \frac{\ln T _4 / T _1}{ T _4- T _1}\right]\end{aligned}

Substitute all terms to get

\eta_{ II }=\frac{\eta_{ TH }}{1- T _{ o } \frac{\ln \left( T _3 / T _2\right)}{ T _3- T _2}-\left(1-\eta_{ TH }\right)\left[1- T _{ o } \frac{\ln \left( T _4 / T _1\right)}{ T _4- T _1}\right]}

Comment: Due to the temperature sensitivity of \Phi_{ H } \text { and } \Phi_{ L } the temperatures do not reduce out from the expression.

Related Answered Questions