Question 6.25: Prove Laurent’s theorem: Suppose f(z) is analytic inside and...

Prove Laurent’s theorem: Suppose f(z) is analytic inside and on the boundary of the ring-shaped region \mathcal{R} bounded by two concentric circles C_{1} and C_{2} with center at a and respective radii r_{1} and r_{2}\left(r_{1}>r_{2}\right) (see Fig. 6-5). Then for all z in \mathcal{R},

f(z)=\sum\limits_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum\limits_{n=1}^{\infty} \frac{a-n}{(z-a)^{n}}

where

\begin{aligned} & a_{n}=\frac{1}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{(w-a)^{n+1}} d w \quad n=0,1,2, \ldots \\ & a_{-n}=\frac{1}{2 \pi i} \oint\limits_{C_{2}} \frac{f(w)}{(w-a)^{-n+1}} d w \quad n=1,2,3, \ldots \end{aligned}

6.5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

By Cauchy’s integral formula [see Problem 5.23, page 159], we have

f(z)=\frac{1}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \oint\limits_{C_{2}} \frac{f(w)}{w-z} d w        (1)

Consider the first integral in (1). As in Problem 6.22, equation (2), we have

\begin{aligned} \frac{1}{w-z} & =\frac{1}{(w-a)\{1-(z-a) /(w-a)\}} \\ & =\frac{1}{w-a}+\frac{z-a}{(w-a)^{2}}+\cdots+\frac{(z-a)^{n-1}}{(w-a)^{n}}+\left(\frac{z-a}{w-a}\right)^{n} \frac{1}{w-z} \quad (2) \end{aligned} 

so that

\begin{aligned} \frac{1}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{w-z} d w= & \frac{1}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{w-a} d w+\frac{z-a}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{(w-a)^{2}} d w \\ & +\cdots+\frac{(z-a)^{n-1}}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{(w-a)^{n}} d w+U_{n} \\ = & a_{0}+a_{1}(z-a)+\cdots+a_{n-1}(z-a)^{n-1}+U_{n} \quad (3) \end{aligned}

where

a_{0}=\frac{1}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{w-a} d w, \quad a_{1}=\frac{1}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{(w-a)^{2}} d w, \quad \ldots, \quad a_{n-1}=\frac{1}{2 \pi i} \oint\limits_{C_{1}} \frac{f(w)}{(w-a)^{n}} d w

and

U_{n}=\frac{1}{2 \pi i} \oint\limits_{C_{1}}\left(\frac{z-a}{w-a}\right)^{n} \frac{f(w)}{w-z} d w

Let us now consider the second integral in (1). We have on interchanging w and z in (2),

\begin{aligned} -\frac{1}{w-z} & =\frac{1}{(z-a)\{1-(w-a) /(z-a)\}} \\ & =\frac{1}{z-a}+\frac{w-a}{(z-a)^{2}}+\cdots+\frac{(w-a)^{n-1}}{(z-a)^{n}}+\left(\frac{w-a}{z-a}\right)^{n} \frac{1}{z-w} \end{aligned}

so that

\begin{aligned} -\frac{1}{2 \pi i} \oint\limits_{C_{2}} \frac{f(w)}{w-z} d w= & \frac{1}{2 \pi i} \oint\limits_{C_{2}} \frac{f(w)}{z-a} d w+\frac{1}{2 \pi i} \oint\limits_{C_{2}} \frac{w-a}{(z-a)^{2}} f(w) d w \\ & +\cdots+\frac{1}{2 \pi i} \oint\limits_{C_{3}} \frac{(w-a)^{n-1}}{(z-a)^{n}} f(w) d w+V_{n} \\ = & \frac{a_{-1}}{z-a}+\frac{a_{-2}}{(z-a)^{2}}+\cdots+\frac{a_{-n}}{(z-a)^{n}}+V_{n} \quad (4) \end{aligned}

where

a_{-1}=\frac{1}{2 \pi i} \oint\limits_{C_{2}} f(w) d w, \quad a_{-2}=\frac{1}{2 \pi i} \oint\limits_{C_{2}}(w-a) f(w) d w, \ldots, a_{-n}=\frac{1}{2 \pi i} \oint\limits_{C_{2}}(w-a)^{n-1} f(w) d w

and

V_{n}=\frac{1}{2 \pi i} \oint\limits_{C_{2}}\left(\frac{w-a}{z-a}\right)^{n} \frac{f(w)}{z-w} d w

From (1), (3), and (4), we have

\begin{aligned} f(z)= & \left\{a_{0}+a_{1}(z-a)+\cdots+a_{n-1}(z-a)^{n-1}\right\} \\ & +\left\{\frac{a_{-1}}{z-a}+\frac{a_{-2}}{(z-a)^{2}}+\cdots+\frac{a_{-n}}{(z-a)^{n}}\right\}+U_{n}+V_{n} \end{aligned}      (5)

The required result follows if we can show that (a) \lim _{n \rightarrow \infty} U_{n}=0 and (b) \lim _{n \rightarrow \infty} V_{n}=0. The proof of (a) follows from Problem 6.22. To prove (b), we first note that since w is on C_{2},

\left|\frac{w-a}{z-a}\right|=\kappa<1

where \kappa is a constant. Also, we have |f(w)|<M where M is a constant and

|z-w|=|(z-a)-(w-a)| \geq|z-a|-r_{2}

Hence, from Property (e), page 112, we have

\begin{aligned} \left|V_{n}\right| & =\frac{1}{2 \pi}\left|\oint\limits_{C_{2}}\left(\frac{w-a}{z-a}\right)^{n} \frac{f(w)}{z-w} d w\right| \\ & \leq \frac{1}{2 \pi} \frac{\kappa^{n} M}{|z-a|-r_{2}} 2 \pi r_{2}=\frac{\kappa^{n} M r_{2}}{|z-a|-r_{2}} \end{aligned}

Then, \lim _{n \rightarrow \infty} V_{n}=0 and the proof is complete.

Related Answered Questions

Question: 6.28

Verified Answer:

Let us assume that C is taken so th...
Question: 6.27

Verified Answer:

(a) Resolving into partial fractions, \frac...
Question: 6.32

Verified Answer:

Let f(z) be analytic inside and on ...