Question 8.11: A rectangular portal frame ABCD is rigidly fixed to a founda......

A rectangular portal frame ABCD is rigidly fixed to a foundation at A and D and is subjected to a compression load P applied at each end of the horizontal member BC (see Fig. P.8.11). If all the members have the same bending stiffness EI, show that the buckling loads for modes that are symmetrical about the vertical center line are given by the transcendental equation,

{\frac{\lambda a}{2}}=-{\frac{1}{2}}\left({\frac{a}{b}}\right)\tan\left({\frac{\lambda a}{2}}\right)

where

λ² = P/EI

p.8.11
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The deflected shape of each of the members AB and BC is shown in Fig. S.8.11. For the member AB and from Eq. (8.1),

E I{\cfrac{\mathrm{d}^{2}\nu}{\mathrm{d}z^{2}}}=-P_{\mathrm{CR}}\nu          (8.1)

 

E I{\frac{\mathrm{d}^{2}v_{1}}{\mathrm{d}z_{1}^{2}}}=-M_{\mathrm{B}}

so that

E I{\cfrac{\mathrm{d}{v}_{1}}{\mathrm{d}z_{1}}}=-M_{\mathrm{{B}}}z_{1}+A

When z_{1}=b,\mathrm{d}v_{1}/\mathrm{d}z_{1}=0. Thus A=M_{\mathrm{{B}}}b and

E I{\cfrac{\mathrm{d}{v}_{1}}{\mathrm{d}z_{1}}}=-M_{\mathrm{{B}}}(z_{1}-b)         (i)

At B, when z_{1}=0, Eq. (i) gives

{\frac{\mathrm{d}v_{1}}{\mathrm{d}z_{1}}}={\frac{M_{\mathrm{B}}b}{E I}}           (ii)

In BC, Eq. (8.1) gives

E I{\frac{\mathrm{d}^{2}v}{\mathrm{d}z^{2}}}=-P v+M_{\mathrm{B}}

or

E I{\frac{\mathrm{d}^{2}v}{\mathrm{d}z^{2}}}+P v=M_{\mathrm{B}}          (iii)

The solution of Eq. (iii) is

v=B\cos{\lambda z}+C\sin{\lambda{z}}+M_{\mathrm{{B}}}/P          (iv)

When z = 0, υ = 0 so that B=-M_{\mathrm{B}}/P.

When z=a/2, dυ/dz = 0 so that

C=B\tan{\frac{\lambda a}{2}}=-{\frac{M_{\mathrm{B}}}{P}}\tan{\frac{\lambda a}{2}}

Eq. (iv) then becomes

\upsilon=-\frac{M_{\mathrm{B}}}{P}{\Big(}\cos{\lambda z}+\tan\frac{\lambda a}{2}\sin{\lambda z}-1{\Big)}

so that

\frac{\mathrm{d}\upsilon}{\mathrm{d}z}=-\frac{M_{\mathrm{B}}}{P}\left(-\lambda\sin\lambda z+\lambda\tan\frac{\lambda a}{2}\cos\lambda z\right)

At B, when z = 0,

{\frac{\mathrm{d}v}{\mathrm{d}z}}=-{\frac{M_{\mathrm{B}}}{P}}\lambda\mathrm{tan}{\frac{\lambda a}{2}}         (v)

Since \mathrm{d}v_{1}/\mathrm{d}z_{1}=\mathrm{d}v/\mathrm{d}z at B, then, from Eqs (ii) and (v),

{\frac{b}{E I}}=-{\frac{\lambda}{P}}\tan{\frac{\lambda a}{2}}

whence,

\frac{\lambda a}{2}=-\frac{1}{2}\Big(\frac{a}{b}\Big)\tan\frac{\lambda a}{2}
s.8.11

Related Answered Questions

Question: 8.19

Verified Answer:

The three possible buckling modes of the column ar...
Question: 8.16

Verified Answer:

There are four boundary conditions to be satisfied...
Question: 8.15

Verified Answer:

The equation for the deflected center line of the ...