Question 17.SE.2: Calculate the fluoride ion concentration and pH of a solutio...
Calculate the fluoride ion concentration and pH of a solution that is 0.20 M in HF and 0.10 M in HCl.
Learn more on how we answer questions.
Analyze We are asked to determine the concentration of F^- and the pH in a solution containing the weak acid HF and the strong acid HCl. In this case the common ion is H^+.
Plan We can again use the four steps outlined in Sample Exercise 17.1.
Solve
Because HF is a weak acid and HCl is a strong acid, the major species in solution are HF, H^+, and Cl^-. The Cl^-, which is the conjugate base of a strong acid, is merely a spectator ion in any acid–base chemistry. The problem asks for [F^-], which is formed by ionization of HF. Thus, this is the important equilibrium:
HF (a q) \rightleftharpoons H ^{+}(a q)+ F ^{-}(a q)
The common ion in this problem is the hydrogen (or hydronium) ion. Now we can tabulate the initial and equilibrium concentrations of each species involved in this equilibrium:
\begin{matrix}\qquad \qquad \qquad \quad \operatorname{HF}(a q) \rightleftharpoons \quad H ^{+}(a q) + F ^{-}(a q)\\ \begin{array}{|c|c|c|c|}\hline \text{Initial (M)}& 0.20 & 0.10 & 0 \\\hline \text{Change (M)}& -x & +x & +x \\\hline \text{Equilibrium}(M) & (0.20-x) & (0.10+x) & x \\\hline\end{array} \end{matrix}
The equilibrium constant for the ionization of HF, from Appendix D, is 6.8 × 10^{-4}. Substituting the equilibrium-constant concentrations into the equilibrium expression gives:
K_a=6.8 \times 10^{-4}=\frac{\left[ H ^{+}\right]\left[ F ^{-}\right]}{[ HF]}=\frac{(0.10+x)(x)}{0.20-x}
If we assume that x is small relative to 0.10 or 0.20 M, this expression simplifies to:
\begin{aligned}\frac{(0.10)(x)}{0.20}&=6.8 \times 10^{-4}\\x &=\frac{0.20}{0.10}\left(6.8 \times 10^{-4}\right)=1.4 \times 10^{-3}\,M=\left[ F ^{-}\right]\end{aligned}
This F^- concentration is substantially smaller than it would be in a 0.20 M solution of HF with no added HCl. The common ion, H+, suppresses the ionization of HF. The concentration of H^+(aq) is:
Thus,
\begin{aligned}&{\left[ H ^{+}\right]=(0.10+x) \,M \simeq 0.10 \,M}\\& pH=1.00\end{aligned}
Comment Notice that for all practical purposes, the hydrogen ion concentration is due entirely to the HCl; the HF makes a negligible contribution by comparison.
\begin{array}{lll} \hline \text { TABLE D.2 } & \text { Dissociation Constants for Bases at } 25^{\circ} \mathrm{C} \\ \hline \text { Name } & \text { Formula } & K_b \\ \hline \text { Ammonia } & \mathrm{NH}_3 & 1.8 \times 10^{-5} \\ \text { Aniline } & \mathrm{C}_6 \mathrm{H}_5 \mathrm{NH}_2 & 4.3 \times 10^{-10} \\ \text { Dimethylamine } & \left(\mathrm{CH}_3\right)_2 \mathrm{NH} & 5.4 \times 10^{-4} \\ \text { Ethylamine } & \mathrm{C}_2 \mathrm{H}_5 \mathrm{NH}_2 & 6.4 \times 10^{-4} \\ \text { Hydrazine } & \mathrm{H}_2 \mathrm{NNH}_2 & 1.3 \times 10^{-6} \\ \text { Hydroxylamine } & \mathrm{HONH}_2 & 1.1 \times 10^{-8} \\ \text { Methylamine } & \mathrm{CH}_3 \mathrm{NH}_2 & 4.4 \times 10^{-4} \\ \text { Pyridine } & \mathrm{C}_5 \mathrm{H}_5 \mathrm{~N} & 1.7 \times 10^{-9} \\ \text { Trimethylamine } & \left(\mathrm{CH}_3\right)_3 \mathrm{~N} & 6.4 \times 10^{-5} \\ \hline \end{array}
\begin{array}{lll}\text{TABLE D.3 Solubility-Product Constants for Compounds at 25 °C}\\ \hline \text { Name } & \text { Formula } & K_{s p} & \text { Name } & \text { Formula } & K_{s p} \\ \hline \text { Barium carbonate } & \mathrm{BaCO}_3 & 5.0 \times 10^{-9} & \text { Lead(II) fluoride } & \mathrm{PbF}_2 & 3.6 \times 10^{-8} \\ \text { Barium chromate } & \mathrm{BaCrO}_4 & 2.1 \times 10^{-10} & \text { Lead(II) sulfate } & \mathrm{PbSO}_4 & 6.3 \times 10^{-7} \\ \text { Barium fluoride } & \mathrm{BaF}_2 & 1.7 \times 10^{-6} & \text { Lead(II) sulfide* } & \mathrm{PbS} & 3 \times 10^{-28} \\ \text { Barium oxalate } & \mathrm{BaC}_2 \mathrm{O}_4 & 1.6 \times 10^{-6} & \text { Magnesium hydroxide } & \mathrm{Mg}(\mathrm{OH})_2 & 1.8 \times 10^{-11} \\ \text { Barium sulfate } & \mathrm{BaSO}_4 & 1.1 \times 10^{-10} & \text { Magnesium carbonate } & \mathrm{MgCO}_3 & 3.5 \times 10^{-8} \\ \text { Cadmium carbonate } & \mathrm{CdCO}_3 & 1.8 \times 10^{-14} & \text { Magnesium oxalate } & \mathrm{MgC}_2 \mathrm{O}_4 & 8.6 \times 10^{-5} \\ \text { Cadmium hydroxide } & \mathrm{Cd}(\mathrm{OH})_2 & 2.5 \times 10^{-14} & \text { Manganese(II) carbonate } & \mathrm{MnCO}_3 & 5.0 \times 10^{-10} \\ \text { Cadmium sulfide* } & \text { CdS } & 8 \times 10^{-28} & \text { Manganese(II) hydroxide } & \mathrm{Mn}(\mathrm{OH})_2 & 1.6 \times 10^{-13} \\ \text { Calcium carbonate (calcite) } & \mathrm{CaCO}_3 & 4.5 \times 10^{-9} & \text { Manganese(II) sulfide* } & \mathrm{MnS} & 2 \times 10^{-53} \\ \text { Calcium chromate } & \mathrm{CaCrO}_4 & 4.5 \times 10^{-9} & \text { Mercury(I) chloride } & \mathrm{Hg}_2 \mathrm{Cl}_2 & 1.2 \times 10^{-18} \\ \text { Calcium fluoride } & \mathrm{CaF}_2 & 3.9 \times 10^{-11} & \text { Mercury(I) iodide } & \mathrm{Hg}_2 \mathrm{I}_2 & 1.1 \times 10^{-1.1} \\ \text { Calcium hydroxide } & \mathrm{Ca}(\mathrm{OH})_2 & 6.5 \times 10^{-6} & \text { Mercury(II) sulfide* } & \mathrm{HgS} & 2 \times 10^{-53} \\ \text { Calcium phosphate } & \mathrm{Ca}_3\left(\mathrm{PO}_4\right)_2 & 2.0 \times 10^{-29} & \text { Nickel(II) carbonate } & \mathrm{NiCO}_3 & 1.3 \times 10^{-7} \\ \text { Calcium sulfate } & \mathrm{CaSO}_4 & 2.4 \times 10^{-5} & \text { Nickel(II) hydroxide } & \mathrm{Ni}(\mathrm{OH})_2 & 6.0 \times 10^{-16} \\ \text { Chromium(III) hydroxide } & \mathrm{Cr}(\mathrm{OH})_3 & 6.7 \times 10^{-31} & \text { Nickel(II) sulfide* } & \mathrm{NiS} & 3 \times 10^{-20} \\ \text { Cobalt(II) carbonate } & \mathrm{CoCO}_3 & 1.0 \times 10^{-10} & \text { Silver bromate } & \mathrm{AgBrO}_3 & 5.5 \times 10^{-13} \\ \text { Cobalt(II) hydroxide } & \mathrm{Co}(\mathrm{OH})_2 & 1.3 \times 10^{-15} & \text { Silver bromide } & \mathrm{AgBr} & 5.0 \times 10^{-13} \\ \text { Cobalt(II) sulfide }{ }^{\star} & \operatorname{Cos} & 5 \times 10^{-22} & \text { Silver carbonate } & \mathrm{Ag}_2 \mathrm{CO}_3 & 8.1 \times 10^{-12} \\ \text { Copper(I) bromide } & \mathrm{CuBr} & 5.3 \times 10^{-9} & \text { Silver chloride } & \mathrm{AgCl} & 1.8 \times 10^{-10} \\ \text { Copper(II) carbonate } & \mathrm{CuCO}_3 & 2.3 \times 10^{-10} & \text { Silver chromate } & \mathrm{Ag}_2 \mathrm{CrO}_4 & 1.2 \times 10^{-12} \\ \text { Copper(II) hydroxide } & \mathrm{Cu}(\mathrm{OH})_2 & 4.8 \times 10^{-20} & \text { Silver iodide } & \text { AgI } & 8.3 \times 10^{-17} \\ \text { Copper(II) sulfide* } & \text { Cus } & 6 \times 10^{-37} & \text { Silver sulfate } & \mathrm{Ag}_2 \mathrm{SO}_4 & 1.5 \times 10^{-5} \\ \text { Iron(II) carbonate } & \mathrm{FeCO}_3 & 2.1 \times 10^{-11} & \text { Silver sulfide* } & \mathrm{Ag}_2 \mathrm{~S} & 6 \times 10^{-51} \\ \text { Iron(II) hydroxide } & \mathrm{Fe}(\mathrm{OH})_2 & 7.9 \times 10^{-16} & \text { Strontium carbonate } & \mathrm{SrCO}_3 & 9.3 \times 10^{-10} \\ \text { Lanthanum fluoride } & \mathrm{LaF}_3 & 2 \times 10^{-19} & \text { Tin(II) sulfide* } & \text { SnS } & 1 \times 10^{-26} \\ \text { Lanthanum iodate } & \mathrm{La}\left(\mathrm{IO}_3\right)_3 & 7.4 \times 10^{-14} & \text { Zinc carbonate } & \mathrm{ZnCO}_3 & 1.0 \times 10^{-10} \\ \text { Lead(II) carbonate } & \mathrm{PbCO}_3 & 7.4 \times 10^{-14} & \text { Zinc hydroxide } & \mathrm{Zn}(\mathrm{OH})_2 & 3.0 \times 10^{-16} \\ \text { Lead(II) chloride } & \mathrm{PbCl}_2 & 1.7 \times 10^{-5} & \text { Zinc oxalate } & \mathrm{ZnC}_2 \mathrm{O}_4 & 2.7 \times 10^{-8} \\ \text { Lead(II) chromate } & \mathrm{PbCrO}_4 & 2.8 \times 10^{-13} & \text { Zinc sulfide* } & \mathrm{ZnS} & 2 \times 10^{-25} \\ \hline \end{array}\\ { }^* \text { For a solubility equilibrium of the type } \mathrm{MS}(s)+\mathrm{H}_2 \mathrm{O}(l) \rightleftharpoons \mathrm{M}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q)