Question 31.8: A packed tower is to be used to reduce the ammonia concentra...

A packed tower is to be used to reduce the ammonia concentration in the gas stream from 4 to 0.3 \% by volume. A water stream is fed to the top of the tower at a rate of 231 \mathrm{~g} / \mathrm{s} and the gas is fed countercurrently at a rate of 0.2 \mathrm{~m}^{3} / \mathrm{s}. The tower, which is packed with 2.54-\mathrm{cm} (1-inch) Raschig rings, is operated isothermally at 293 \mathrm{~K} and 1.013 \times 10^{5} \mathrm{~Pa}.

Determine (a) the composition of the exiting liquid stream; (b) the diameter of the absorption tower if the gas pressure drop is limited to 200 \mathrm{~N} / \mathrm{m}^{2} per meter of packing.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The concentration of the three known streams may be expressed on a \mathrm{NH}_{3}-free basis

\begin{aligned} Y_{\mathrm{NH}_{3}, 1} & =\frac{y_{\mathrm{NH}_{3}, 1}}{1-y_{\mathrm{NH}_{3}, 1}}=\frac{0.04}{0.96}=0.0417 \\ Y_{\mathrm{NH}_{3}, 2} & =\frac{y_{\mathrm{NH}_{3}, 2}}{1-y_{\mathrm{NH}_{3}, 2}}=\frac{0.003}{0.997}=0.003 \\ X_{\mathrm{NH}_{3}, 2} & =0.0 \end{aligned}

The gas enters the tower at plane 1 , and its molar flow rate is

\begin{aligned} & G_{1}=\frac{\dot{V} P}{R T} \cdot \frac{1}{\mathrm{~A}}=\frac{\left(0.20 \frac{\mathrm{m}^{3}}{\mathrm{~s}}\right)\left(1.013 \times 10^{5} \mathrm{~Pa}\right)}{\left(8.314 \frac{\mathrm{Pa} \cdot \mathrm{m}^{3}}{\mathrm{~mol} \cdot \mathrm{K}}\right)(293 \mathrm{~K})} \cdot \frac{1}{\mathrm{~A}}=8.317 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}} \\ & G_{S}=G_{1}\left(1-y_{\mathrm{NH}_{3}, 1}\right)=8.317 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}(0.96)=7.98 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}} \end{aligned}

The \mathrm{NH}_{3}-free water flow rate is

L_{S}=L_{2}\left(1-x_{\mathrm{NH}_{3}, 2}\right)=231 \frac{\mathrm{g}}{\mathrm{s}} \cdot \frac{\mathrm{mol}}{18 \mathrm{~g}} \cdot \frac{1}{\mathrm{~A}}=12.83 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}

By an overall balance for ammonia, the concentration of the exiting liquid stream can be established.

\begin{aligned} L_{S}\left(X_{\mathrm{NH}_{3}, 1}-X_{\mathrm{NH}_{3}, 2}\right) & =G_{S}\left(Y_{\mathrm{NH}_{3}, 1}-Y_{\mathrm{NH}_{3}, 2}\right) \\ 12.83 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}\left(X_{\mathrm{NH}_{3}, 1}-0\right) & =7.98 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}(0.0417-0.003) \\ X_{\mathrm{NH}_{3}, 1} & =0.024 \end{aligned}

or

x_{\mathrm{NH}_{3}, 1}=\frac{X_{\mathrm{NH}_{3}, 1}}{1+X_{\mathrm{NH}_{3}, 1}}=\frac{0.024}{1.024}=0.0234

The liquid flow rate at end 1 is

L_{1}=\frac{L_{S}}{1-x_{\mathrm{NH}_{3}, 1}}=\frac{12.83 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}}{1-0.0234}=13.13 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}

The maximum mass flow rates for both phases will occur at end 1. Accordingly, we will use these flow rates to determine the diameter of the tower.

On a unit-area basis, the liquid stream at end 1 will contain 12.83 \mathrm{~mol} / \mathrm{s} and \mathrm{H}_{2} \mathrm{O} 13.13- 12.83=0.3 \mathrm{~mol} / \mathrm{s} \mathrm{NH}_{3}. The total mass flow rate is

12.83 \frac{\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}} \cdot\left(\frac{18 \mathrm{~g}}{\mathrm{~mol}}\right)+0.3 \frac{\mathrm{mol} \mathrm{NH}_{3}}{\mathrm{~s}} \cdot \frac{1}{\mathrm{~A}} \cdot\left(\frac{17 \mathrm{~g}}{\mathrm{~mol}}\right)=236.1 \frac{\mathrm{g}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}

The average molecular weight of the gas is

\left(0.04 \frac{\mathrm{mol} \mathrm{NH}_{3}}{\mathrm{~mol}}\right)\left(\frac{17 \mathrm{~g}}{\mathrm{~mol}}\right)+\left(0.96 \frac{\mathrm{mol} \mathrm{air}}{\mathrm{mol}}\right)\left(\frac{29 \mathrm{~g}}{\mathrm{~mol}}\right)=28.5 \frac{\mathrm{g}}{\mathrm{mol}}

The total gas-mass flow rate is

\left(8.317 \frac{\mathrm{mol}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}\right)\left(28.5 \frac{\mathrm{g}}{\mathrm{mol}}\right)=237 \frac{\mathrm{g}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}}

The ratio of the two mass flow rates is

\frac{L^{\prime}}{G^{\prime}}=\frac{\left(236.1 \frac{\mathrm{g}}{\mathrm{s}}\right)\left(\frac{1}{\mathrm{~A}}\right)}{\left(237 \frac{\mathrm{g}}{\mathrm{s}}\right)\left(\frac{1}{\mathrm{~A}}\right)}=0.996

Note that this ratio can be evaluated without knowing either the diameter or the cross-sectional area. The density of the gas stream entering the tower is

\begin{aligned} \rho_{G}=\frac{n}{V} M_{\mathrm{W}}=\frac{P}{R T} M_{\mathrm{W}} & =\frac{1.013 \times 10^{5} \mathrm{~Pa}}{\left(8.314 \frac{\mathrm{Pa} \cdot \mathrm{m}^{3}}{\mathrm{~mol} \cdot \mathrm{K}}\right)(293 \mathrm{~K})} \cdot 28.5 \frac{\mathrm{g}}{\mathrm{mol}} \\ & =1185 \mathrm{~g} / \mathrm{m}^{3}=1.185 \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}

The density of the dilute aqueous stream will be essentially that of water at 293 \mathrm{~K} that is 998.2 \mathrm{~kg} / \mathrm{m}^{3}. The abscissa for Figure 31.25 becomes

\frac{L^{\prime}}{G^{\prime}}\left(\frac{\rho_{G}}{\rho_{L}-\rho_{G}}\right)^{1 / 2}=0.996\left(\frac{1.185}{998.2-1.185}\right)^{1 / 2}=0.034

At a pressure drop of 200 \mathrm{~N} / \mathrm{m}^{2} per meter of packing, this abscissa value indicates an ordinate value of 0.049 ; consequently

0.049=\frac{\left(G^{\prime}\right)^{2} c_{f}\left(\mu_{L}\right)^{0.1} J}{\rho_{G}\left(\rho_{L}-\rho_{G}\right) g_{c}}

Upon rearrangement

\left(G^{\prime}\right)^{2}=\frac{0.049 \rho_{G}\left(\rho_{L}-\rho_{G}\right) g_{c}}{c_{f}\left(\mu_{L}\right)^{0.1} J}

From Table 31.2, we evaluate the c_{f} for 1 -in. Raschig rings to be 155 . The viscosity of the aqueous stream at 293 \mathrm{~K} is given in Appendix Table I to be 993 \times 10^{-6} \mathrm{~Pa} \cdot \mathrm{s}.

\begin{aligned} \left(G^{\prime}\right)^{2} & =\frac{0.049\left(1.185 \frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)\left(998.2-1.185 \frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)(1.0)}{(155)\left(993 \times 10^{-6} \mathrm{~Pa} \cdot \mathrm{s}\right)(1.0)}=0.745 \\ G^{\prime} & =0.863 \frac{\mathrm{kg}}{\mathrm{m}^{2} \cdot \mathrm{s}}=863 \frac{\mathrm{g}}{\mathrm{m}^{2} \cdot \mathrm{s}} \end{aligned}

As the gas feed rate, G^{\prime}, to the tower is equal to 237 \frac{\mathrm{g}}{\mathrm{s}} \cdot \frac{1}{\mathrm{~A}} and 863 \frac{\mathrm{g}}{\mathrm{m}^{2} \cdot \mathrm{s}}, the cross-sectional area of the tower is

A=\frac{237 \frac{\mathrm{g}}{\mathrm{s}}}{863 \frac{\mathrm{g}}{\mathrm{m}^2 \cdot \mathrm{s}}}=0.275 \mathrm{~m}^2

The area is \frac{\pi D^2}{4}; accordingly, the diameter is

D=\left[\frac{\left(0.275 \mathrm{~m}^2\right)(4)}{\pi}\right]^{1 / 2}=0.59 \mathrm{~m}

Table 31.2 Tower Packing Characteristics{}^{\dagger}

Nominal size, in. (mm)
Packing \frac{1}{4} (6) \frac{1}{2} (13) \frac{3}{4} (19) 1 (25) 1 2 (50)
Raschig rings
Ceramic
\epsilon 0.73 0.63 0.73 0.73 0.71 0.74
cf 1600 909 255 155 95 65
ap ft2/ft3 240 111 80 58 38 28
Metal
\epsilon 0.69 0.84 0.88 0.92
cf 700 300 155 115
ap ft2/ft3 236 128 83.5 62.7
Berl saddles
Ceramic
\epsilon 0.60 0.63 0.66 0.69 0.75 0.72
cf 900 240 170 110 65 45
ap ft2/ft3 274 142 82 76 44 32
Intalox saddles
Ceramic
\epsilon 0.75 0.78 0.77 0.775 0.81 0.79
cf 725 200 145 98 52 40
ap ft2/ft3 300 190 102 78 59.5 36
Plastic
\epsilon 0.91 0.93
cf 33 56.5
ap ft2/ft3 63 33
Pall rings
Plastic
\epsilon 0.90 0.91 0.92
cf 52 40 25
ap ft2/ft3 63 39 31
Metal
e 0.94 0.95 0.96
cf 48 28 20
ap ft2/ft3 63 39 31

{}^{\dagger}R. E. Treybal, Mass-Transfer Operations, McGraw-Hill Book Company, New York, 1980.

31.25

Related Answered Questions