Question : A four bar mechanism is to be designed, by using three preci...

A four bar mechanism is to be designed, by using three precision points, to generate the function
y=x^{1.5}, \text { for the range } 1 \leq x \leq 4.
Assuming 30^{\circ} starting position and 120^{\circ} finishing position for the input link and 90^{\circ} starting position and 180^{\circ} finishing position for the output link, find the values of x, y, \theta \text { and } \phi corresponding to the three precision points.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given : x_{ S }=1 ; x_{ F }=4 ; \theta_{ S }=30^{\circ} ; \theta_{ F }=120^{\circ} ; \phi_{ S }=90^{\circ} ; \phi_{ F }=180^{\circ}

Values of x

The three values of x corresponding to three precision points (i.e. for n = 3) according to Chebychev’s spacing are given by

x_{j}=\frac{1}{2}\left(x_{ S }+x_{ F }\right)-\frac{1}{2}\left(x_{ F }-x_{ S }\right) \cos \left[\frac{\pi(2 j-1)}{2 n}\right],       where j = 1, 2 and 3

 

\therefore         x_{1}=\frac{1}{2}(1+4)-\frac{1}{2}(4-1) \cos \left[\frac{\pi(2 \times 1-1)}{2 \times 3}\right]=1.2                                                          \ldots(\because j=1)

 

x_{2}=\frac{1}{2}(1+4)-\frac{1}{2}(4-1) \cos \left[\frac{\pi(2 \times 2-1)}{2 \times 3}\right]=2.5                                                                                          \ldots(\because j=2)

 

and        x_{3}=\frac{1}{2}(1+4)-\frac{1}{2}(4-1) \cos \left[\frac{\pi(2 \times 3-1)}{2 \times 3}\right]=3.8                                                                  \ldots(\because j=3)

 

Note : The three precision points x_{1}, x_{2} \text { and } x_{3} may be determined graphically.

 

Values of y

Since y=x^{1.5} , therefore the corresponding values of y are

y_{1}=\left(x_{1}\right)^{1.5}=(1.2)^{1.5}=1.316

 

y_{2}=\left(x_{2}\right)^{1.5}=(2.5)^{1.5}=3.952

 

y_{3}=\left(x_{3}\right)^{1.5}=(3.8)^{1.5}=7.41

 

Note : y_{ S }=\left(x_{ S }\right)^{1.5}=(1)^{1.5}=1 \text { and } y_{ F }=\left(x_{ F }\right)^{1.5}=(4)^{1.5}=8

 

Values of \theta

The three values of \theta corresponding to three precision points are given by

\theta_{j}=\theta_{ S }+\frac{\theta_{ F }-\theta_{ S }}{x_{ F }-x_{ S }}\left(x_{j}-x_{ S }\right) , where j = 1, 2 and 3

 

\therefore          \theta_{1}=30+\frac{120-30}{4-1}(1.2-1)=36^{\circ}

 

\theta_{2}=30+\frac{120-30}{4-1}(2.5-1)=75^{\circ}

 

and      \theta_{3}=30+\frac{120-30}{4-1}(3.8-1)=114^{\circ}

 

Values of \phi

The three values of \phi corresponding to three precision points are given by

\phi_{j}=\phi_{ S }+\frac{\phi_{ F }-\phi_{ S }}{y_{ F }-y_{ S }}\left(y_{j}-y_{ S }\right)

 

\therefore           \phi_{1}=90+\frac{180-90}{8-1}(1.316-1)=94.06^{\circ}

 

\phi_{2}=90+\frac{180-90}{8-1}(3.952-1)=127.95^{\circ}

 

and      \phi_{3}=90+\frac{180-90}{8-1}(7.41-1)=172.41^{\circ}