Question : A 1035 steel has a tensile strength of 70 kpsi and is to be ...

A 1035 steel has a tensile strength of 70 kpsi and is to be used for a part that sees 450°F in service. Estimate the Marin temperature modification factor and \left(S_{e}\right)_{450^{\circ}} if
(a) The room-temperature endurance limit by test is \left(S_{e}^{\prime}\right)_{70^{\circ}}=39.0 kpsi \text { . }
(b) Only the tensile strength at room temperature is known.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) First, from Eq. (6–27),

 

\begin{aligned}k_{d}=& 0.975+0.432\left(10^{-3}\right)T_{F}-0.115\left(10^{-5}\right) T_{F}^{2} \\&+0.104\left(10^{-8}\right)T_{F}^{3}-0.595\left(10^{-12}\right) T_{F}^{4}\end{aligned}        (6–27)

 

\begin{aligned}k_{d}=& 0.975+0.432\left(10^{-3}\right)(450)-0.115\left(10^{-5}\right)\left(450^{2}\right)\\&+0.104\left(10^{-8}\right)\left(450^{3}\right)-0.595\left(10^{-12}\right)\left(450^{4}\right)=1.007\end{aligned}

 

Thus,

 

\left(S_{e}\right)_{450^{\circ}}=k_{d}\left(S_{e}^{\prime}\right)_{70^{\circ}}=1.007(39.0)=39.3 kpsi

 

(b) Interpolating from Table 6–4 gives

 

\left(S_{T} / S_{R T}\right)_{450^{\circ}}=1.018+(0.995-1.018) \frac{450-400}{500-400}=1.007

 

Thus, the tensile strength at 450°F is estimated as

 

\left(S_{ut}\right)_{450^{\circ}}=\left(S_{T} / S_{RT}\right)_{450^{\circ}}\left(S_{ut}\right)_{70^{\circ}}=1.007(70)=70.5 kpsi

 

From Eq. (6–8) then,

 

S_{e}^{\prime}=\left\{\begin{array}{ll}0.5 S_{u t} & S_{u t} \leq 200 kpsi (1400 MPa ) \\100 kpsi & S_{u t}> kpsi \\700 MPa & S_{u t}>1400 MPa\end{array}\right.    (6–8)

 

\left(S_{e}\right)_{450^{\circ}}=0.5\left(S_{ut}\right)_{450^{\circ}}=0.5(70.5)=35.2 kpsi

 

Part a gives the better estimate due to actual testing of the particular material.

 

 

ج