Repeat problem [8] in the absence of the reflector.
Part a. From Eq. (8.3) we may write
V=F_{q}P/P_{\mathrm{max}}^{\prime\prime \prime}
and with a height to diameter ratio of one V = 2πR³. For a bare cylindrical F_{q}=3.63 (see Eq. (7.30)) From the above equation we may write
R^{3}=\frac{P}{2\pi P_{\operatorname*{max}}^{\prime\prime \prime}}\,F_{q}=\frac{2000\cdot10^{6}}{2\pi450}3.63=2.57
The radius is
R = 1.37 m
The core volume is
V=2\pi R^{3}=16.1\,\mathrm{m}^{3}
1=\frac{ k_{\infty}}{1+M^{2}B^{2}}
k_{∞}=1+M^{2}B^{2}=1+M^{2}33.0\ /D^{2}=1+0.18^{2}\cdot33.0\ /(2\cdot1.37)^{2}
k_{∞}=1.142
Part b. The earlier equation becomes
R^{3}=\frac{P}{2\pi P_{\mathrm{max}}^{\prime\prime \prime}\cdot\left(0.90\right)}F_{q}=\frac{1}{0.90}2.57=2.86
The radius is
R = 1.42 m
% change = 100(1.42-1.37)/1.37= 3.65 %
The core volume is
V=2\pi R^{3}=18.0\,\mathrm{m}^{3}
% change = 100(18.0-16.1)/16.1= 11.8 %
k_{\infty}=1+M^{2}B^{2}=1+M^{2}33.0\ /D^{2}=1+0.18^{2}\cdot33.0\ /(2\cdot1.42)^{2}
k_{\infty}= 1.133
% change = 100(1.133-1.142)/1.142= -0.79 %