Question 10.SP.3: Column AB consists of a W10 × 39 rolled-steel shape made of ...
Column A B consists of a W 10 \times 39 rolled-steel shape made of a grade of steel for which \sigma_{Y}=36 \mathrm{ksi} and E=29 \times 10^{6} \mathrm{psi}. Determine the allowable centric load \mathbf{P}(a) if the effective length of the column is 24 \mathrm{ft} in all directions, (b) if bracing is provided to prevent the movement of the midpoint C in the x z plane. (Assume that the movement of point C in the y z plane is not affected by the bracing.)

Learn more on how we answer questions.
We first compute the value of the slenderness ratio from Eq. 10.41 corresponding to the given yield strength \sigma_{Y}=36 \mathrm{ksi}.
\frac{L}{r}=4.71 \sqrt{\frac{29 \times 10^{6}}{36 \times 10^{3}}}=133.7
a. Effective Length =\mathbf{2 4} \mathrm{ft}. Since r_{y}<r_{x}, buckling will take place in the x z plane. For L=24 \mathrm{ft} and r=r_{y}=1.98 in., the slenderness ratio is
\frac{L}{r_{y}}=\frac{(24 \times 12) \mathrm{in.}}{1.98 \mathrm{in.}}=\frac{288 \mathrm{in} .}{1.98 \mathrm{in.}}=145.5
Since L / r>133.7, we use Eq. (10.39)
\sigma_{e}={\frac{\pi^{2}E}{(L/r)^{2}}} (10.39)
in Eq. (10.40)
\sigma_{c r}=0.877\sigma_{e} (10.40)
to determine \sigma_{c r}
\sigma_{c r}=0.877 \sigma_{e}=0.877 \frac{\pi^{2} E}{(L / r)^{2}}=0.877 \frac{\pi^{2}\left(29 \times 10^{3} \mathrm{ksi}\right)}{(145.5)^{2}}=11.86 \mathrm{ksi}
The allowable stress, determined using Eq. (10.42), and P_{\text {all }} are
\begin{aligned} & \sigma_{\text {all }}=\frac{\sigma_{c r}}{1.67}=\frac{11.86 \mathrm{ksi}}{1.67}=7.10 \mathrm{ksi} \\ & P_{\text {all }}=\sigma_{\text {all }} A=(7.10 \mathrm{ksi})\left(11.5 \mathrm{in}^{2}\right)=81.7 \mathrm{kips} \end{aligned}
b. Bracing at Midpoint C. Since bracing prevents movement of point C in the x z plane but not in the y z plane, we must compute the slenderness ratio correspoinding to buckling in each plane and determine which is larger.
x z \text { Plane: } \quad \text { Effective length }=12 \mathrm{ft}=144 \text { in., } r=r_{y}=1.98 \text { in. }
L / r=(144 \text { in. }) /(1.98 \text { in. })=72.7
yz Plane: Effective length =24 \mathrm{ft}=288 in., r=r_{x}=4.27 \mathrm{in}.
L / r=(288 \text { in. }) /(4.27 \text { in. })=67.4
Since the larger slenderness ratio corresponds to a smaller allowable load, we choose L / r=72.7. Since this is smaller than L / r=133.7, we use Eqs. (10.39) and (10.38)
\sigma_{\mathrm{cr}}=[0.658^{\sigma_Y/\sigma_e}]\sigma_{Y} (10.38)
to determine \sigma_{c r}
\sigma_{e}=\frac{\pi^{2} E}{(L / r)^{2}}=\frac{\pi^{2}\left(29 \times 10^{3} \mathrm{ksi}\right)}{(72.7)^{2}}=54.1 \mathrm{ksi}
\sigma_{c r}=\left[0.658^{\left(\sigma_{\gamma} / \sigma_{e}\right)}\right] F_{Y}=\left[0.658^{(36 \mathrm{ksi} / 54.1 \mathrm{ksi})}\right] 36 \mathrm{ksi}=27.3 \mathrm{ksi}
We now calculate the allowable stress using Eq. (10.42) and the allowable load.
\begin{aligned} \sigma_{\text {all }} & =\frac{\sigma_{c r}}{1.67}=\frac{27.3 \mathrm{ksi}}{1.67}=16.32 \mathrm{ksi} \\ P_{\text {all }} & =\sigma_{\text {all }} A=(16.32 \mathrm{ksi})\left(11.5 \mathrm{in}^{2}\right) \quad P_{\text {all }}=187.7 \mathrm{ksi} \end{aligned}

