Question 10.SP.6: Using the interaction method, solve Sample Prob. 10.5. Assum...
Using the interaction method, solve Sample Prob. 10.5. Assume \left(\sigma_{\text {all }}\right)_{\text {bending }}= 150 \mathrm{MPa}.
Learn more on how we answer questions.
Using Eq. (10.60), we write
\frac{P / A}{\left(\sigma_{\text {all }}\right)_{\text {centric }}}+\frac{M c / I}{\left(\sigma_{\text {all }}\right)_{\text {bending }}} \leq 1
Substituting the given allowable bending stress and the allowable centric stress found in Sample Prob. 10.5, as well as the other given data, we have
\begin{gathered} \frac{P /\left(9.42 \times 10^{-3} \mathrm{~m}^{2}\right)}{97.1 \times 10^{6} \mathrm{~Pa}}+\frac{P(0.200 \mathrm{~m}) /\left(1.050 \times 10^{-3} \mathrm{~m}^{3}\right)}{150 \times 10^{6} \mathrm{~Pa}} \leq 1 \\ P \leq 423 \mathrm{kN} \end{gathered}
The largest allowable load \mathbf{P} is thus \mathbf{P}=423 \mathrm{kN} \downarrow