Question 2.8: Consider a well-shuffled deck of 52 cards (Example 28 in Cha......

Consider a well-shuffled deck of 52 cards (Example 28 in Chapter 1), and suppose we draw at random three cards. What is the probability that at least one is an ace?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let A be the required event, and let A_i be defined by: A_i = “exactly i cards are aces,” i = 0, 1, 2, 3. Then, clearly, P(A)=P(A_{1}\cup A_{2}\cup A_{3}). Instead, we may choose to calculate P(A) through P(A^{c})=1-P(A_{0}), where

P(A_{0})={\frac{\binom{48}{3} }{\binom{52}{3} }}={\frac{48\times47\times46}{52\times51\times50}}={\frac{4,324}{5,525}},\quad{\mathrm{so~that}}\,P(A)={\frac{1,201}{5,525}}\simeq0.217.

Related Answered Questions

Question: 2.26

Verified Answer:

The inequalities P(A\mid C)\gt P(B\mid C)[/...
Question: 2.31

Verified Answer:

(i) ~~~P(A_{1})={\textstyle{\frac{1}{3}}};\...
Question: 2.34

Verified Answer:

There will be majority if there are at least [late...
Question: 2.33

Verified Answer:

A poker hand can be selected in {\binom{52}...
Question: 2.32

Verified Answer:

It is clear that combinations are the appropriate ...
Question: 2.30

Verified Answer:

(i) If ~A=~“all 4 choose the same h...
Question: 2.28

Verified Answer:

Denote by ~H_{1},\,H_{2},~ and [lat...
Question: 2.27

Verified Answer:

Clearly, P(A\cup B\cup C)=P[(A^{c}\cap B^{c...
Question: 2.25

Verified Answer:

First, if A and B are independent, then A and [lat...
Question: 2.10

Verified Answer:

(i)    The constant c is determined through the re...