Question A6.3: For the countercurrent extraction in Example A6.2, calculate...

For the countercurrent extraction in Example A6.2, calculate the recovery and separation factor for solute A if the contents of tubes 85-99 are pooled together.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Example A6.2 we know that after 100 steps of the countercurrent extraction, solute A is normally distributed about tube 90 with a standard deviation of 3. To determine the fraction of solute in tubes 85-99, we use the single-sided normal distribution in Appendix 1A to determine the fraction of solute in tubes 0-84 and in tube 100 . The fraction of solute A in tube 100 is determined by calculating the deviation z (see Chapter 4 )

z=\frac{r-\mu}{\sigma}=\frac{99-90}{3}=3

and using the table in Appendix 1A to determine the corresponding fraction. For z=3 this corresponds to 0.135 \% of solute A. To determine the fraction of solute \mathrm{A} in tubes 0-84, we again calculate the deviation

z=\frac{r-\mu}{\sigma}=\frac{85-90}{3}=-1.67

From Appendix 1A we find that 4.75 \% of solute A is present in tubes 0-84. Solute A’s recovery, therefore, is

100 \%-4.75 \%-0.135 \% \approx 95 \%

To calculate the separation factor, we must determine the recovery of solute \mathrm{B} in tubes 85-99. This is determined by calculating the fraction of solute B in tubes 85-100 and subtracting the fraction of solute B in tube 100 . By calculating z and using Appendix 1A, we find that approximately 10.6 \% of solute \mathrm{B} is in tubes 85-100, and that essentially no solute \mathrm{B} is in tube 100 . The separation factor, S_{\mathrm{B}, \mathrm{A}} therefore, is

S_{\mathrm{B}, \mathrm{A}}=\frac{R_{\mathrm{B}}}{R_{\mathrm{A}}}=\frac{10.6}{95}=0.112

Appendix 1A
Single-Sided Normal Distribution^a
u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4365 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0253
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.00964 0.00914 0.00866
2.4 0.00820 0.00776 0.00734 0.00695 0.00657
2.5 0.00621 0.00587 0.00554 0.00523 0.00494
2.6 0.00466 0.00440 0.00415 0.00391 0.00368
2.7 0.00347 0.00326 0.00307 0.00289 0.00272
2.8 0.00256 0.00240 0.00226 0.00212 0.00199
2.9 0.00187 0.00175 0.00164 0.00154 0.00144
3.0 0.00135
3.1 0.000968
3.2 0.000687
Single-Sided Normal Distribution^a—continued
u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3.3 0.000483
3.4 0.000337
3.5 0.000233
3.6 0.000159
3.7 0.000108
3.8 0.0000723
3.9 0.0000481
4.0 0.0000317
4.1 0.0000207
4.2 0.0000133
4.3 0.00000854
4.4 0.00000541
4.5 0.00000340
4.6 0.00000211
4.7 0.00000130
4.8 0.000000793
4.9 0.000000479
5.0 0.000000287

^aThis table gives the proportion, P, of the area under a normal distribution curve that lies to the right of the deviation z, where z is defined as

z = (X – µ)/σ

For example, the proportion of the area under a normal distribution curve that lies to the right of a deviation of 0.04 is 0.4840, or 48.40%. The area to the left of the deviation is given as 1 – P. Thus, 51.60% of the area under the normal distribution curve lies to the left of a deviation of 0.04. When the deviation is negative, the values in the table give the proportion of the area under the normal distribution curve that lies to the left of z; therefore, 48.40% of the area lies to the left, and 51.60% of the area lies to the right of a deviation of –0.04.

Related Answered Questions

Question: A6.2

Verified Answer:

The fraction, q, of each solute rem...
Question: A6.1

Verified Answer:

The fraction, q, of each solute tha...