The N(μ, θ) (μ known) p.d.f. is of the exponential type.
Here
f(x;\theta)={\frac{1}{{\sqrt{2\pi\theta}}}}e^{-{\frac{1}{2\theta}}(x-\mu)^{2}},
and this is of the form (4)
f(x;\theta)=C(\theta)e^{Q(\theta)T(x)}\times h(x),\ \ \ \ x\in\Re,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)with C(\theta)={\frac{1}{\sqrt{2\pi\theta}}},\ Q(\theta)=-{\frac{1}{2\theta}} strictly increasing (since {\frac{d}{d\theta}}(-{\frac{1}{2\theta}})={\frac{1}{2\theta^{2}}}\gt 0),\;T(x)=(x-\mu)^2,\mathrm{and}\;h(x)=1.