Speed deamplifier. In Fig. 9-74, block 1 of mass m_1 slides along an x axis on a frictionless floor at speed 4.00 m/s. Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass m_2 = 2.00m_1. Next, block 2 undergoes a one-dimensional elastic collision with stationary block 3 of mass m_3 = 2.00m_2. (a) What then is the speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d) the momentum of block 3 greater than, less than, or the same as the initial values for block 1?
Using Eq. 9-67 and Eq. 9-68, we have after the first collision
v_{2 f}=\frac{2 m_1}{m_1+m_2}v_{1 i}\text{.} (9-68)
v_{1 f}=\frac{m_1-m_2}{m_1+m_2}v_{1 i} (9-67)
\begin{aligned}& v_{1 f}=\frac{m_1-m_2}{m_1+m_2}v_{1 i}=\frac{m_1-2 m_1}{m_1+2 m_1}v_{1 i}=-\frac{1}{3}v_{1 i}\\& v_{2 f}=\frac{2 m_1}{m_1+m_2}v_{1 i}=\frac{2 m_1}{m_1+2 m_1}v_{1 i}=\frac{2}{3}v_{1 i}.\end{aligned}
After the second collision, the velocities are
\begin{aligned}& v_{2, f f}=\frac{m_2-m_3}{m_2+m_3}v_{2 f}=\frac{-m_2}{3 m_2}\frac{2}{3}v_{1 i}=-\frac{2}{9}v_{1 i}\\& v_{3, f f}=\frac{2 m_2}{m_2+m_3}v_{2 f}=\frac{2 m_2}{3 m_2}\frac{2}{3}v_{1 i}=\frac{4}{9}v_{1 i}.\end{aligned}
(a) Setting v_{1i} = 4 m/s, we find v_{3 ff} ≈ 1.78 m/s.
(b) We see that v_{3 ff} is less than v_{1i} .
(c) The final kinetic energy of block 3 (expressed in terms of the initial kinetic energy of block 1) is
K_{3, f f}=\frac{1}{2}m_3 v_3^2=\frac{1}{2}\left(4 m_1\right)\left(\frac{4}{9}\right)^2 v_{1 i}^2=\frac{64}{81}K_{1 i}
We see that this is less than K_{1i} .
(d) The final momentum of block 3 is p_{3 f f}=m_3 v_{3 f f}=\left(4 m_1\right)\left(\frac{16}{9}\right) v_1>m_1 v_1 .